Search Results
You are looking at 1 - 4 of 4 items for
- Author or Editor: James T. English x
Experiments were conducted to determine the temperatures at which different densities of INA bacteria incite ice crystallization on `Totem' strawberry flowers and to determine if there is a relationship between densities of INA bacteria on strawberry flowers and floral injury. Primary flowers were inoculated with Pseudomonas syringae at 106 cells/ml buffer, incubated at 25°C day/10°C night and 100% RH for 48 h, and exposed to –2.0°C. No ice nucleation occurred on these inoculated flowers and all of the flowers survived. However, when inoculated flowers were subjected to lower temperatures, ice nucleation occurred at –2.2°C and few of the flowers survived. In contrast, ice crystals formed on the surface of most non-inoculated flowers at –2.8°C and 21% of the flowers survived exposure to –3.5°C. When INA bacterial densities were ≈105 colony forming units/g dry wt, floral injury occurred at a warmer temperature than to flowers that had lower bacterial densities.
INA bacteria were isolated from primary flowers of `Totem' strawberry (Fragaria ×ananassa Duch.) plants that had been previously inoculated with strain Cit 7 of Pseudomonas syringae van Hall or noninoculated to determine their relationship to ice-nucleation temperature and floral injury. Mean ice-nucleation temperature of inoculated and noninoculated flowers was -2.2 and -2.8 °C, respectively. Primary flowers of noninoculated plants survived lower temperatures than those of inoculated plants. In another experiment, noninoculated plants were misted with sterile deionized water and incubated for 0, 12, 24, 36, or 48 hours at 25 °C day/10 °C night, and naturally occurring INA bacteria were isolated from primary flowers. INA bacterial densities increased exponentially with increasing incubation period. The critical wetness period for INA bacteria to establish a sufficient density to increase the likelihood of floral injury at -2.5 °C was 24 hours. Longer wetness periods resulted in higher INA bacterial densities but did not increase the floral mortality rate. Thermal analysis demonstrated that the ice nucleation temperature was associated with strawberry floral injury. Thus, low temperature survival of flowers was adversely affected by moisture for ≥24 h due to the presence of a sufficient density of INA bacteria to incite ice formation and floral injury.
In 1993, ice-nucleation-active (INA) bacteria were isolated from `Redwing' red raspberries (Rubus idaeus L. var. idaeus) at five pigmentation stages. Fruit were also subjected to thermal analysis to determine the ice nucleation temperatures. INA bacteria were recovered from nearly all fruit samples, and the bacterial populations tended to decrease with greater red color development (i.e., fruit maturation). However, the ice nucleation temperature was not affected by the stage of fruit pigmentation. In 1994, INA bacterial densities were similar among fruit at the three pigmentation stages sampled. INA bacteria were recovered more often from the calyx rather than the drupe surface of these fruit. INA bacteria also were detected on pistils of some fruit. Red and pink fruit, which were nucleated with ice, had greater receptacle injury than mottled, yellow, or green fruit, but INA bacterial densities apparently were not related to injury. Thus, the injury response of fruit at different pigmentation (or development) stages indicated that nonbacterial ice nuclei may be involved in freezing injury of developing raspberries.
Cryoprotectants were applied at labeled rates to primary flowers of `Honeoye' strawberry (Fragaria × ananassa Duch.) plants at full bloom to determine their effects on the floral organs. Frostgard at 50 ml/liter or KDL at 22 ml/liter injured pistils and resulted in misshapened fruit. Floral buds that were closed when cryoprotectants were applied were uninjured. In other experiments, efficacies of cryoprotectants were determined after floral tissues of `Honeoye' strawberry plants were inoculated or not inoculated with the ice-nucleation-active (INA) bacteria, Pseudomonas syringae van Hall and subjected to sub-freezing temperatures. None of the products protected primary or secondary flowers against freezing injury regardless of the occurrence of INA bacteria. INA bacteria were not recovered from primary flowers of treated plants that were killed by low temperature exposure, indicating that non-bacterial nuclei may incite freezing in these tissues.