Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: James Salvatore x
Clear All Modify Search
Full access

Ed Stover, James Salvatore and Ferdinand Wirth

Sensor-actuated precision spray systems are designed to prevent pesticide delivery unless canopy is detected in the corresponding spray zone. Where frequent gaps are present in the tree row, using orchard sprayers with these systems is likely to lower pesticide costs and reduce off-target deposition. Pesticide savings from use of a sensor-actuated precision spray system were assessed in 27 grapefruit (Citrus paradisi) blocks selected without prior knowledge of grove characteristics, with nine blocks in each of three age categories: 5-6 years, 10 to 12 years and 20 years and older. The sprayer was optimized for each block by opening only those nozzles appropriate for tree size and furrow depth, so that no spray was delivered under or over the canopy of most trees. The same randomly selected 3.0 to 4.7 acre (1.2 to 1.9 ha) section was then sprayed in each block both with and without activation of the precision spray system. In each block, the precision spray system computer also calculated spray savings based on precision sprayer use with no operator nozzle adjustment. Mean savings in spray material from use of the precision sprayer was 6.6% of total conventional output when comparisons were made with optimal sprayer nozzling in each grove versus 18.6% with no operator adjustment of nozzles. In this study, optimizing nozzling provided a larger proportion of spray savings than use of the precision sprayer on 100% of groves 5 to 12 years old and 44% of groves greater than 20 years old. However, in 70% of groves tested, precision spray systems increased spray savings by more than 2% even when using optimal nozzling. Assignment of precision sprayers to groves with greatest potential for savings will likely provide greatest efficiency, while uniform groves forming hedgerow will offer so little potential savings that even the additional cost of weed management will probably not be recovered.

Full access

Ed Stover, Dominick Scotto and James Salvatore

Pesticide spray practices for citrus (Citrus spp.) in the Indian River region of Florida were surveyed in 2001 as the first step in identifying opportunities for improving efficiency and reducing potential environmental impact. The survey covered 73% of grapefruit (C. paradisi) acreage in Indian River, St. Lucie, Martin and Palm Beach counties, comprising 70% of all Indian River commercial grapefruit. Large differences in spray practices were revealed. The focus of this survey was grapefruit spraying, since grapefruit represent 59% of fresh citrus shipped from the Indian River region, and are sprayed more intensively than citrus fruit grown for processing. In commercial groves, almost all foliar sprays to grapefruit are applied using air-assisted sprayers pulled through the groves by tractors. Use of engine-driven and power-takeoff-driven sprayers were reported with equal frequency and accounted for 89% of spray machines used. Lowvolume Curtec sprayers comprised the remainder. Spray volume for grape-fruit varied: 7.6% of acreage was sprayed at 25 to 35 gal/acre (230 to 330 L·ha-1) for all sprays; 4.2% was sprayed at 100 to 170 gal/acre (940 to 1600 L·ha-1) for all sprays; 15.3% was sprayed at 200 to 380 gal/acre (1900 to 3600 L·ha-1) for all sprays; 28.2% was sprayed at 450 to 750 gal/acre (4200 to 7000 L·ha-1) for all sprays; and 44.5% of grapefruit acreage was sprayed in a progressive manner from lower to higher volume as the season progresses. Many mid and high spray volume growers reported unacceptable results when they lowered spray volume. Although correlation was moderate (r = 0.35 to 0.45), regressions indicated that both total foliar pesticide spray material costs, and annual fungicidal copper (Cu) use increased with spray volume used for postbloom fungicides. Mean Cu use per acre was in the middle of the recommended range. All growers reported adjusting nozzling for tree height within a grove, and since Indian River groves are bedded, growers adjusted sprayer output differently for trees on bed tops versus furrows on 85% of acreage. Sprayers were shut off for missing trees on 83% of acreage, but this was done only for two or more adjacent trees on almost half of this area. Sensor-actuated sprayers were used to minimize off-target application on 14.7% of grapefruit acreage, but for an additional 21% of acreage, growers reported trying and abandoning this technology. While 88% of grove acreage was sprayed during the day, 75% of acreage sprayed using less than 100 gal/acre was sprayed at night. Growers reported no defined protocol for ceasing spray operations based on environmental conditions.

Free access

James J. Salvatore, Mark A. Ritenour, Brian T. Scully and L. Gene Albrigo

Up to three hurricanes (Charley, Frances, and Jeanne) passed over the same citrus-producing areas of Florida in August and September 2004. In October 2005, hurricane Wilma also passed over South Florida. We began evaluating citrus tree recovery in four commercial groves (red and white grapefruit, and `Murcott' tangerine) following the 2004 hurricanes to determine how quickly commercial groves recover following such catastrophic events. We previously reported that, among other things, even branches formed after the last 2004 hurricane matured sufficiently to flower the following spring, but to a lesser extent than older shoots. Here, we report hurricane effects on tree yield, fruit quality, and shelf life. Fruit loss was dramatic following the 2004 hurricanes (>90%). Fruit loss was also substantial following hurricane Wilma, with `Murcott' yields reduced 18% and grapefruit yields reduced 58%-65%. However, in comparison to 2003 pre-hurricane yields, yields following hurricane Wilma declined only 9% for `Murcott,' and 26%-40% for grapefruit. These yield reductions are less than the fruit lost due to the present year's hurricane. Therefore, the citrus trees studied demonstrated tremendous resilience and, if not for another hurricane the following year, would have likely exceeded pre-hurricane yields only 1 year after the devastating 2004 hurricanes. Effects of the hurricanes on harvested fruit quality and shelf life will also be discussed.

Free access

Mark A. Ritenour, Peter J. Stoffella, Zhenli He, Jan A. Narciso and James J. Salvatore

Previous research showed that mature green tomato fruit dipped 1 to 4 min in a 1% CaCl2 solutions before storage had significantly increased peel calcium content and reduced postharvest decay. The present experiments, conducted over 3-day periods (reps), evaluate treatment effectiveness under commercial packinghouse conditions. Three cartons of 5 × 6 sized mature green `FL 47' tomatoes were collected from the line (control). CaCl2 was then added to the packinghouse 15,142-L dump tank to a concentration of 1% before more fruit were run through the line and three additional cartons collected. The cycle was repeated after bringing the concentration in the dump tank up to 2% CaCl2. After storage for ≤24 days at 20 °C, postharvest decay was significantly reduced in fruit receiving the 2% CaCl2 treatment. Calcium content in the tomato peel tended to increase with each successively higher CaCl2 treatment, but differences were nonsignificant. Laboratory tests showed Rhizopus more affected by 3% CaCl2, while Alternaria was affected by 2% and 3% CaCl2 solutions. Results were recorded as colony diameter, but colony morphology and sporulation were also affected. Inoculation studies of tomatoes dipped in 1% CaCl2 after wounding with Rhizopus or Alternaria showed better decay control when compared to treating before wounding.