Search Results
You are looking at 1 - 3 of 3 items for :
- Author or Editor: James S. Owen Jr. x
- Journal of the American Society for Horticultural Science x
Moisture characteristic curves (MCC) relate the water content in a substrate to the matric potential at a given tension or height. These curves are useful for comparing the water-holding characteristics of two or more soils or soilless substrates. Most techniques for developing MCC are not well suited for measuring low tensions (0 to 100 cm H2O) in coarse substrates used in container nursery production such as those composed of bark. The objectives of this research were to compare an inexpensive modified long column method with an established method for creating low-tension MCCs and then to determine the best model for describing MCCs of bark-based soilless substrates. Three substrates composed of douglas fir (Pseudotsuga menziesii) bark alone or mixed with either peatmoss or pumice were used to compare models. Both methods described differences among the three substrates, although MCC for each method differed within a substrate type. A four-parameter log-logistic function was determined to be the simplest and most explanatory model for describing MCC of bark-based substrates.
Water-efficient soilless substrates need to be engineered to address diminishing water resources. Therefore, we investigated soilless substrates with varying hydrologies to determine their influence on crop growth and plant water status. Aged loblolly pine (Pinus taeda) bark was graded into four particle size fractions. The coarsest fraction was also blended with either sphagnum peat or coir at rates that mimic static physical properties of the unfractionated bark or conventional substrate used by specialty crop producers within the eastern United States. Hibiscus rosa-sinensis ‘Fort Myers’ plugs were established in each of the seven substrates and maintained at optimal substrate water potentials (−50 to −100 hPa). After a salable crop was produced 93 days after transplanting, substrate was allowed to dry until plants completely wilted. Crop morphology and water use was affected by substrate hydrology. Increased substrate unsaturated hydraulic conductivity (K) allowed for plants to access higher proportions of water and therefore increased crop growth. Maintaining optimal substrate water potential allowed plants to be produced with <18 L water. Measurements of plant water availability showed that the substrate water potential at which the crop ceases to withdraw water varied among substrates. Pore uniformity and connectivity could be increased by both fibrous additions and particle fractionation, which resulted in increased substrate hydraulic conductivity (K s). Plants grown in substrates with higher hydraulic conductivities were able to use more water. Soilless substrate hydrology can be modified and used in concert with more efficient irrigation systems to provide more water sustainability in container crop systems.
An understanding of how dissolved mineral nutrient ions (solutes) move through pine bark substrates during the application of irrigation water is vital to better understand nutrient transport and leaching from containerized crops during an irrigation event. However, current theories on solute transport processes in soilless systems are largely based on research in mineral soils and thus do not necessarily explain solute transport in soilless substrates. A study was conducted to characterize solute transport through a 9 pine bark:1 sand (by volume) substrate by developing and analyzing breakthrough curves (BTCs). Columns filled with pine bark substrate were subjected to the application of a nutrient solution (tracer) and deionized water under saturated and unsaturated conditions. Effluent drained from the columns during these applications was collected and analyzed to determine the effluent concentration (C) of the bulk ions in solution through electrical conductivity (EC) and nitrate (NO3 –), phosphate, and potassium (K+) concentrations. The BTCs were developed by plotting C relative to the concentration of the input solution (Co) (i.e., relative concentration = C/Co) as a function of the cumulative effluent volume. Solutes broke through the column earlier (i.e., with less cumulative effluent) and the transition from C/Co = 0 to 1 occurred more abruptly under unsaturated than saturated conditions. Movement of the anion, NO3 –, through the substrate was observed to occur more quickly than the cation K+. Throughout the experiment, 37% of the applied K+ was retained by the pine bark. The adsorption of K+ to pine bark cation exchange sites displaced calcium (Ca2+) and magnesium (Mg2+), of which the combined equivalent charge accounted for 43.1% of the retained K+. These results demonstrate the relative ease that negatively charged fertilizer ions could move through a pine bark substrate while solution is actively flowing through substrate pores such as during irrigation events. This approach to evaluating solute transport may be used in horticultural research to better understand how mineral nutrients move through and subsequently leach from soilless substrates during irrigation. Expanding this knowledge base may lead to the refinement of production practices that improve nutrient and water use efficiency in container nurseries.