Search Results

You are looking at 1 - 10 of 28 items for

  • Author or Editor: James P. Gilreath x
  • All content x
Clear All Modify Search
Full access

Bielinski M. Santos and James P. Gilreath

A 2-year field study was conducted in two locations in the Dominican Republic to determine the influence of various support systems and nitrogen fertilization programs on passion fruit (Passiflora edulis var. flavicarpa) yield and economic returns. Three trellis systems were used: 1) single line, where a single wire was placed along the planting rows at 2 m high; 2) double lines, where two wires were established along the planting rows at 2 and 1 m high, respectively; and 3) crossed lines, with wires at 2 m high, allowing the vines to grow both along and across the planting rows. Nitrogen (N) fertilization rates were 13, 26, and 52 g/plant of N every 20 days. Plants trained with the single- and double-line support systems combined with 52 g/plant of N had higher marketable yield and had the lowest proportion of non-marketable fruit/plant per year. Partial budget analysis indicated that the single-line support system had a marginal return rate of 36% compared to the double-line support system.

Free access

Bielinski M. Santos and James P. Gilreath

Among the current methyl bromide alternatives under study, propylene oxide (Propozone) has shown potential to control soilborne diseases, nematodes, and weeds in polyethylene-mulched tomato. However, further research is needed to determine the appropriate application rates to control nutsedge in the crop. Also, the effect of this fumigant on tomato nutrient absorption has not been determined yet. Therefore, field trials were conducted for this purpose in Bradenton, Fla. Tested rates of Propozone were 0, 190, 380, 570, 760, and 950 L·ha–1 and were shank-applied in raised planting beds three weeks before `Florida 47' tomato transplanting. Examined data indicated that there was a rapid decrease in nutsedge density with 570 L·ha–1. For phosphorus (P) and potassium (K) foliar content, there was a linear increase of P concentrations as rate increase, whereas K content increased rapidly after 190 L·ha–1. The highest tomato yields were obtained with 760 and 950 L·ha–1 of Propozone.

Free access

Bielinski M. Santos and James P. Gilreath

Purple nutsedge can easily penetrate polyethylene mulch films. However, there are no reports on possible differences among mulch films. Because of this situation, field trials were conducted in Ruskin and Bradenton, Fla., during 2002 and 2003. In Spring 2002, the treatments were a) no mulch, b) black Pliant High Barrier mulch, and c) green Klerk's Virtually Impermeable Film (VIF). In Spring 2002, the films were a) black Pliant High Barrier, b) black IPM Bromostop, c) metallized Pliant, and d) green Klerk's VIF. The number of nutsedge emerged through the films was determined. No fumigants or herbicides were applied. Results indicated that the Klerk's VIF had the lowest nutsedge densities. No nutsedge control differences were found between the IPM Bromostop and the metallized Pliant films. These differences might be due to the physical properties of the films, including stretching and thickness.

Full access

James P. Gilreath and Bielinski M. Santos

Two independent field studies were conducted to determine the efficacy of methyl iodide (MI) formulations and rates on mixed nutsedge [purple nutsedge (Cyperus rotundus) and yellow nutsedge (Cyperus esculentus)] stands and their effects on tomato (Solanum lycopersicum) yields. In both studies, treatments were rates of two formulations of MI + chloropicrin (Pic) at the 98:2 (v/v) and 50:50 (v/v) proportions. In the MI + Pic 98:2 study, the fumigant rates were 0, 100, 125, 150, 175, and 200 lb/acre in Spring 2004 and 0, 125, 150, 175, and 200 lb/acre in Fall 2004. In the MI + Pic 50:50 study, the rates were 0, 200, 250, 300, 350, and 400 lb/acre during both seasons. Additionally, a grower standard was included in each study, which consisted of plots fumigated with methyl bromide (MBr) + Pic 67:33 (v/v) at a rate of 350 lb/acre. Higher rates of MI + Pic 98:2 and 50:50 significantly reduced mixed nutsedge densities and increased relative marketable fruit weight of tomato. Plots fumigated with MBr + Pic were weed-free at the sampling times during both studies. Data from both studies indicated that MI + Pic 98:2 and 50:50 rates of 125 and 200 lb/acre, respectively, consistently provided the highest marketable fruit weights and mixed nutsedge control, which were similar to those obtained in plots treated with MBr + Pic.

Full access

Bielinski M. Santos and James P. Gilreath

Over the years, efficacy of metam potassium (MK) on purple nutsedge (Cyperus rotundus) control has been inconsistent, in many cases because of a lack of knowledge about application techniques. Therefore, field studies were conducted to determine the effect of water delivery volumes and flow rates on purple nutsedge control with MK, and the influence of MK rates and concentrations on purple nutsedge control. Three separate studies were established for 1) water application volumes and flow rates, 2) MK application rates and concentrations, and 3) MK concentration levels. For the water application volumes and flow rate trials, a single MK rate of 60 gal/acre was injected with either 1 or 2 acre-inch/acre (27,154 or 54,308 gal/acre) of water. The water flow rates were 0.30, 0.45, and 0.60 gal/100 ft of row per minute within each water volume. An nontreated control was included. In the application rate and concentrations studies, treatments were a nontreated control, 30 gal/acre applied with 0.5 acre-inch/acre of water (≈3000 ppm), 60 gal/acre applied with either 0.5 or 1 acre-inch/acre of water (≈6000 and 3000 ppm), 120 gal/acre applied with either 1 or 2 acre-inch/acre of water (≈6000 and 3000 ppm), and 240 gal/acre applied with 2 acre-inch/acre of water (≈6000 ppm). In the MK concentration trials, 0, 2000, 3000, 4000, 5000, and 6000 ppm were tested. Results indicated that neither water volumes nor flow rates used for MK application had a significant impact on purple nutsedge control at 10 weeks after treatment (WAT). However, there was a significant effect of the combinations of MK rates and water delivery volumes on purple nutsedge densities at 4 and 15 WAT. Similarly, MK concentrations obtained from a single application rate resulted in improved purple nutsedge control up to 10 WAT, reducing densities to less than 5 plants/ft2 with 6000 ppm of MK.

Full access

Bielinski M. Santos, James P. Gilreath, and Timothy N. Motis

Field trials were conducted from 1999 to 2003 to determine whether chloropicrin (Pic) stimulates nutsedge (Cyperus spp.) emergence through polyethylene mulch, and to examine at which Pic rate the stimulatory effect is maximized. Shank-injected Pic rates were 0, 50, 100, 150, 200, and 250 lb/acre. Application rates between 107 and 184 lb/acre of Pic stimulated nutsedge sprouting through polyethylene mulch by 60%, 400%, 58%, and 120% more than the nontreated control during four of the seasons. Rates above 250 lb/acre eliminated the stimulatory effect on nutsedge, reducing densities to the same levels as the nontreated control. The exact physiological mechanism of this stimulation is still unknown.

Full access

James P. Gilreath, Bielinski M. Santos, and Timothy N. Motis

Field studies were conducted to compare the performance of several methyl bromide (MBr) alternative programs on sting nematode (Belonolaimus spp.) control and marketable yield of ‘Camarosa’ strawberry (Fragaria ×ananassa). The tested fumigation programs were 1) MBr + chloropicrin (Pic; 67:33 v/v) at 350 lb/acre, 2) Pic + metam sodium (MNa) at 300 lb/acre and 37.5 gal/acre, 3) 1,3-dichloropropene (1,3-D) + Pic at 35 gal/acre, 4) 1,3-D + Pic and dazomet at 35 gal/acre and 200 lb/acre, 5) propylene oxide at 45 gal/acre, 6) furfural + allyl isothiocyanate (AITC) at 600 lb/acre, 7) furfural and MNa at 56 and 50 gal/acre, 8) furfural + AITC at 400 lb/acre followed by four furfural applications of 6 gal/acre/injection, 9) furfural and MNa at 37 and 33 gal/acre followed by four furfural applications of 6 gal/acre/injection, 10) fosthiazate and Pic at 4.5 and 150 lb/acre, and 11) a nontreated control. The fumigation programs consisting of 1,3-D + Pic and dazomet, 1,3-D + Pic, Pic and MNa, and fosthiazate and Pic proved to be as valuable as the grower-standard MBr + Pic on strawberry plant vigor, sting nematode control, and early and total marketable yields.

Free access

James P. Gilreath, Carlene A. Chase, and Salvadore J. Locascio

Drift from pesticides can kill or damage nontarget organisms. In these studies, the effects of sublethal rates of the herbicide glyphosate applied prebloom, at bloom, and postbloom of the first flower cluster were evaluated in tomato (Lycopersicon esculentum Mill.). As rates increased from 1 to 100 g·ha-1, foliar injury and flower and fruit number per plant varied with the stage of development at the time of exposure and the time of evaluation after treatment. Plants treated with 60 and 100 g·ha-1 glyphosate prebloom and at bloom had developed moderate to severe foliar injury by 14 days after treatment, but phytotoxicity to plants treated postbloom was only mild to moderate. Blooms abscised from plants treated with 60 and 100 g·ha-1 glyphosate for several weeks after application and fruit set was reduced. Greatest yield losses occurred following treatment prebloom (just prior to bloom) and at bloom. Plants treated before emergence of flower buds, and more mature plants exposed when first cluster fruit were sizing, yielded better than did those treated just prior to bloom and at bloom. Chemical name used: N-(phosphonomethyl)glycine (glyphosate).

Free access

James P. Gilreath, Carlene A. Chase, and Salvadore J. Locascio

Cucumber (Cucumis sativus L.) growth and yield in response to application of sublethal rates of 2,4-D at several developmental stages were evaluated in field studies during two seasons. In Expt. 1, prebloom applications of 2,4-D amine reduced plant vigor and increased foliar epinasty as rates increased from 0 to 112 g·ha-1. Early and total fruit yields also declined linearly as 2,4-D rates increased; 112 g·ha-1 2,4-D reduced early yield by 25% and total yield by 20%. In Expt. 2, plant vigor declined with increasing rates of 2,4-D applied at all four stages of development from first true leaf to early fruit enlargement; however, response at stage 1 differed with time after application. Epinasty increased with 2,4-D rate when applied at all developmental stages; however the severity of the response varied with time after application for stages 1, 2, and 3, but not for stage 4. Averaged over all developmental stages, vine length, fresh weight, and yield decreased linearly as rates increased. Early and total yields with 112 g·ha-1 were 22% and 19% lower than those of nontreated plants, respectively. Growth inhibition and yield decline, pooled across 2,4-D rates, were greater when exposure occurred at the earlier stages of development. Chemical name used: (2,4-dichlorophenoxy)acetic acid (2,4-D).

Free access

James P. Gilreath, Carlene A. Chase, and Salvadore J. Locascio

Sublethal rates of 2,4-D and dicamba were applied to pepper to evaluate the possible effects of single or multiple exposures to drift from these herbicides. Dicamba induced more foliar injury than did 2,4-D and reduced vigor more as herbicide rates increased. Postbloom applications reduced vigor less than did earlier applications. Epinastic response was affected by stage of development at application and time after treatment. Postbloom applications did not affect yield, but dicamba and 2,4-D applied at earlier stages of development resulted in linear reduction of marketable and total yields as rates increased to 112 g·ha-1. Reductions in plant vigor with increased rates were greater and foliar epinasty was more pronounced with two sequential applications of 2,4-D or dicamba than with single applications. Marketable yields were unaffected by single prebloom applications but declined linearly with two applications. Cull and total yields were not affected by the number of applications. With prebloom and bloom applications of 2,4-D, flower abscission increased and fruit set decreased as rate increased. Chemical names used: 3,6-dichloro-2-methoxybenzoic acid (dicamba); 2,4-dichlorophenoxy)acetic acid (2,4-D).