Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: James H. Baird x
Clear All Modify Search

Decreased stand uniformity together with reduced aesthetics and playability caused by annual bluegrass (Poa annua) intrusion in creeping bentgrass (Agrostis stolonifera) putting greens is one of the major problems that golf course superintendents face with managing newer playing surfaces. Few herbicides are registered for selective control of annual bluegrass in creeping bentgrass greens, and the risk of herbicide resistance remains an issue, thus use of plant growth regulators (PGRs) is still the primary method of annual bluegrass suppression. This study was conducted to evaluate eight PGR treatments, employed as a series of 15 consecutive, biweekly applications to suppress annual bluegrass encroachment in ‘Pure Distinction’ creeping bentgrass maintained as a golf course putting green in Los Angeles, CA. Best annual bluegrass suppression was observed with products containing flurprimidol (FP) at 0.256 lb/acre, paclobutrazol (PB) at 0.119 lb/acre, or three-way mixture of FP, trinexapac-ethyl (TE), and PB (FP+PB+TE) at 0.055, 0.014, and 0.055 lb/acre, respectively. Although all treatments caused some significant creeping bentgrass injury, which increased over time, PB at 0.119 lb/acre and FP+PB+TE at 0.055, 0.014, and 0.055 lb/acre, respectively, appeared to be safest among effective treatments. Additionally, those treatments caused significantly darker green turf, which may be desirable on putting greens. This research confirms the potential of PGR use to limit annual bluegrass infestation on creeping bentgrass greens in a Mediterranean climate and reveals the most effective treatments that could be used in a putting green maintenance program.

Open Access

Replacing cool-season turf with more drought and heat tolerant warm-season turfgrass species is a viable water conservation strategy in climates where water resources and precipitation are limited. Field studies were conducted in Riverside and Irvine, CA, to investigate three methods (scalping, eradication with a nonselective herbicide, planting into existing turf) of converting an existing tall fescue (Festuca arundinacea) sward to warm-season turf. Cultivars established vegetatively by plugging were ‘De Anza’ hybrid zoysiagrass [Zoysia matrella × (Z. japonica × Z. tenuifolia)], ‘Palmetto’ st. augustinegrass (Stenotaphrum secundatum), ‘Tifsport’ hybrid bermudagrass (Cynodon dactylon × C. transvaalensis), ‘Sea Spray’ seashore paspalum (Paspalum vaginatum), and ‘UC Verde’ buffalograss (Buchloe dactyloides). Cultivars established from seeds were ‘Princess-77’ bermudagrass (C. dactylon) and ‘Sea Spray’ seashore paspalum. Neither scalping nor planting into existing tall fescue were effective conversion strategies, as none of the warm-season turfgrasses reached 50% groundcover within 1 year of planting. All of the species except for st. augustinegrass reached a higher percentage of groundcover at the end of the study when glyphosate herbicide was applied to tall fescue before propagation compared with the other conversion strategies. Bermudagrass and seashore paspalum established from seeds and hybrid bermudagrass from plugs provided the best overall establishment with 97%, 93%, and 85% groundcover, respectively, when glyphosate was used before establishment. Quality of seeded cultivars matched or exceeded that of cultivars established vegetatively by plugging. These results suggest that eradication of tall fescue turf followed by establishment of warm-season turf from seeds is the best and easiest turf conversion strategy.

Full access

Field studies were conducted in Kansas, Nebraska, and Oklahoma in 1996 to evaluate the influence of nitrogen (N), phosphorus (P), and potassium (K) applied alone or in combination on the establishment rate of buffalograss [Buchloe dactyloides (Nutt.) Engelm.] from seed. `Cody' buffalograss burrs were planted at 98 kg·ha-1. Nitrogen was applied at 0 or 49 kg·ha-1 at planting and at 49 kg·ha-1 weekly or every other week for 5 weeks after seeding (WAS). The total N amounts applied were 0, 49, 147, or 294 kg·ha-1. Phosphorus and K were applied at rates of 0 or 49 kg·ha-1 at planting only. Percent buffalograss coverage ratings were taken weekly for up to 11 WAS. Buffalograss coverage was enhanced by N rates up to 147 kg·ha-1. Application of P improved buffalograss establishment at the Nebraska and Oklahoma sites but had no effect at the Kansas site. Potassium application had no influence on establishment at any site. Chemical names used: methyl 2-[[[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)-amino]carbonyl]amino] sulfonyl]benzoate (metsulfuron methyl); 6-chloro-N,-diethyl-1,3,5-triazine-2,4-diamine (simazine)

Free access

Golf courses in coastal regions of northern California are often faced with severe injury caused by pacific shoot-gall nematodes (Anguina pacificae) on their annual bluegrass (Poa annua) host in putting greens. For years, fenamiphos was used for mitigating disease outbreaks until its registration was withdrawn in 2008. An alternative product containing azadirachtin was intended for nematode suppression. Still, it required repeated applications throughout the year with questionable efficacy, making attempts to lessen the impact of the pathogen costly. This study evaluated fluopyram as a novel nematicide for control of pacific shoot-gall disease. Various application frequencies and rates were tested at several golf courses affected by the nematode. Results revealed that fluopyram applied once at 0.22 lb/acre reduced the number of new shoot-galls and improved annual bluegrass appearance for several months. Increased rates and application frequency occasionally improved the efficacy further. Although the visual quality of turf treated with this plant protection compound was tremendously enhanced, and the number of new shoot-galls was reduced, rarely a significant effect was observed on the population density of several soil-dwelling plant-parasitic nematodes, including pacific shoot-gall nematode. It is hypothesized that fluopyram did not move significantly past the thatch layer and into the soil. However, it effectively reduced the ability of pacific shoot-gall nematode juveniles to induce new shoot galls. Due to its long half-life, it likely protected against both new nematode infections and dissemination of pacific shoot-gall nematode when the shoot-galls decomposed.

Open Access