Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: James F. Cahill x
Clear All Modify Search
Free access

James F. Cahill and Eric G. Lamb

A plant's performance depends on its ability to deal with numerous, simultaneous ecological challenges. In both natural and production systems, dominant challenges include competition for soil resources and light, herbivory, and general abiotic stress. A central goal of research is to understand how these processes interact with each other and with plant phenotype (above- and belowground) to influence overall plant performance. Complicating these efforts is the reality that plants are phenotypically plastic with the phenotypic response to one challenge potentially altering the impact of a different challenge. Furthermore, factors external to the plant (e.g., the genotypic and phenotypic composition of the surrounding plants) can also influence the consequence of various ecological pressures. We have been using Arabidopsis thaliana as a model organism to help disentangle this complicated web of ecological interactions. Competitive ability can be influenced by small genotypic changes. A plant's ability to suppress competitors is driven mainly by size-related traits and soil fertility and a plant's ability to withstand harm coming from numerous sources. The relative importance of competition is contingent not only on the match between genotype and environment, but also on the diversity of genotypes within a given population. There is a need to consider alternative effects of plant traits along with the cascading consequences of plant responses to biotic and abiotic challenges.