Search Results

You are looking at 1 - 10 of 56 items for

  • Author or Editor: James E. Faust x
  • All content x
Clear All Modify Search
Full access

James E. Faust and Joanne Logan

The National Renewable Energy Laboratory developed the National Solar Radiation Database to provide accessible solar radiation data to the research community for various uses. Previously, we created a series of monthly daily light integral (DLI) maps to provide a tool for horticulturists to estimate the potential growth and flowering responses for various plants throughout the year. The original DLI maps were based on solar radiation data from 239 sites recorded from 1961 to 1990. The DLI maps presented in this article were created from an updated database that included data from 1998 to 2009. This database provides higher resolution data modeled from satellite images of cloud cover. The data are presented in pixels with each pixel representing 100 km2 of land across the lower 48 United States and Hawaii, whereas the Alaska data are 1600 km2 pixels. The database provided global horizontal irradiance data that were converted to DLI (mol·m−2·d−1) using the conversion factor of 0.007265 mol (400–700 nm)·Wh−1 (400–2700 nm), which assumes that 45% of the solar radiation is in the photosynthetically active radiation (PAR, 400–700 nm) region and 4.48 μmol·J−1 is the conversion from radiometric to quantum units. The updated DLI maps provide more geographically precise data reflecting recent weather patterns. We present a comprehensive review of recent research exploring the growth and flowering responses of horticultural crops to DLI.

Free access

James E. Faust and Pamela Korczynski

In 1998, `Freedom Red' poinsettia stock plants were grown outdoors under 0%, 60%, and 80% shade cloth. The stock plants received a single pinch leaving 10 nodes below the pinch. Cuttings were harvested once per week for 3 weeks. The cuttings were propagated, transplanted, pinched, and grown to anthesis in the same greenhouses. After anthesis, the plants were dropped onto a concrete pad from increasing heights ranging from 10 to 70 cm. Stem breakage was recorded each time the plants were dropped. Stem breakage of the finished plants increased as the percentage of shade cloth over the stock plants increased and as cutting harvest week number increased. From the Week 1 cuttings, 0%, 8%, and 10% of the lateral stems broke off of plants from the 0%, 60%, and 80% shade cloth treatments when the plants were dropped 20 cm. From Week 2 cuttings, 6%, 30%, and 36% of the lateral stems broke off the 0%, 60%, and 80% shade treatments. From Week 3 cuttings, 0%, 29%, and 43% of the lateral stems broke off of the 0%, 60%, and 80% shade treatments that were dropped 20 cm. Thirty-six percent of the Week 3 cuttings broke off of the 80% shade treatment plants before anthesis, while none of the lateral shoots broke off of the 0% shade treatment until the plants were dropped from 40 cm.

Free access

Elizabeth Will and James E. Faust

A model was developed that will calculate the maximum number of containers that can be placed in a specified area. There are basically three patterns of container placement. First, “square” placement involves placing pots in parallel rows in both directions so that any four pots form a square. The other two methods involve staggered patterns in which any three containers form a triangle. In the “long staggered” pattern, the long rows are parallel to the long dimension of the bench or floor space, while in the “short staggered” pattern, long rows are parallel to the short dimension of the bench. Comparisons of spacing patterns were made using a range of greenhouse/bench dimensions and container sizes. In most cases, a staggered arrangement allowed a significant increase in the number of containers fitting on a bench as compared to square placement. For example, when 6-inch pots are placed pot-to-pot in an 8 × 50-foot greenhouse section or bench, “short staggered” or “long staggered” arrangement of containers permitted 10.4% to 11.9% more containers over that allowed by a square pattern. In general, the larger the bench or greenhouse section, the greater the benefit of staggered spacing. The difference between short and long staggered was usually less than 3%, and depended on the specific space dimensions. This model can be easily entered into a spreadsheet for growers to perform their own calculations.

Open access

Mary Vargo and James E. Faust

Herbaceous stock plant production and cutting harvest methods affect the performance of cuttings harvested from those stock plants. Specifically, the effect of daily light integral (DLI), ethephon spray applications, and the stock plant node position (NPSP) of hybrid impatiens (Impatiens ×hybrida) ‘Compact Electric Orange’ stock plants on the flowering of the harvested cuttings was examined. The DLI treatments were grouped in ranges of low (5.1–5.5 mol·m–2·d–1), medium (7.6–8.8 mol·m–2·d–1), and high (10.3–12.0 mol·m–2·d–1) levels. The stock plants were treated weekly with 0, 50, 100, 200, or 300 mg·L–1 ethephon. Cuttings were harvested from six NPSP, which refers to the location on the stock plants from which the cuttings were harvested. Time to flower of the harvested cuttings decreased as DLI increased from 5.1 to 12.0 mol·m–2·d–1, as ethephon concentrations decreased from 300 to 0 mg·L–1, and as NPSP moved from lower to upper positions within the stock plant canopy. Time to flower was highly correlated with the node position on the cutting (NPC) where the first flower appeared. For example, when flowers appeared in the lowest NPC on the shoot (NPC 1), the first flower opened 2.5 weeks after sticking the unrooted cuttings in propagation, while flowers that appeared in NPC 7, the seventh-oldest node from the base of the cutting, opened at 9.0 weeks. The results demonstrate how stock plant management practices can be manipulated to produce cuttings that allow growers to produce flowering plants on different schedules, i.e., production time can be shortened from conventional production schedules, which may allow hybrid impatiens to be marketed like bedding plant species such as impatiens (Impatiens walleriana).

Open access

Uttara C. Samarakoon and James E. Faust

Clematis (Clematis ×hybrida) is among the flowering plants well-recognized by the retail consumer; however, production has not traditionally fit into standard greenhouse production systems. One reason is the relatively long 2-year production cycle from propagation to flowering. Four experiments were conducted with clematis ‘H.F. Young’ to understand the factors that influence shoot development and flowering of clematis so that strategies could be developed for bulking, providing a cold treatment, and flowering the plants with a shortened production time. The first experiment showed an increase in shoot and flower numbers and a decrease in time to flower as the duration of cold treatment increased from 0 to 9 weeks and the photoperiod increased from 9 to 16 hours. The second experiment resulted in greater shoot and flower numbers when plants were forced at 21 °C as compared with 27 °C. The third experiment showed that the application of ethephon (500 or 1000 mg·L−1) during bulking increased shoot formation (branching) as compared with the control or 500 mg·L−1 benzylaminopurine treatments. The fourth experiment showed that applications of 500 mg·L−1 ethephon along with a 16-hour photoperiod during the bulking period improved shoot number and flowering of the finished crop. The combined results provide guidelines for producing a well-branched, flowering clematis crop within 1 year from the start of propagation to the time of the first open flower.

Free access

James E. Brown-Faust and Royal D. Heins

Saintpaulia ionantha `Utah' plants were grown in growth chambers at constant 15, 20, 25, and 30°C temperatures and daily photosynthetic irradiances of 1, 4, 7, and 10 mol1 m-2 day-1 delivered by 23, 92, 161, and 230 μmol m-2 s-1 for 12 hours. Models were developed describing leaf unfolding rate (LUR) and flower development rate (FDR) as a function of temperature and irradiance by recording the dates of leaf unfolding and flower opening over the course of the experiment and then calculating rates using regression. Both LUR and FDR increased as temperature increased from 15 to 25°C and then decreased. Both LUR and FDR increased as irradiance increased from 1 to 4 mol m-2 day-1. Increasing daily irradiance above 4 mol m-2 da y-1 did not significantly increase LUR or FDR. Model validation data are being collected from plants growing under 3 irradiance levels in greenhouses maintained at 15, 20, 25, and 30°C air temperatures.

Free access

James E. Faust and Royal D. Heins

The effects of temperature and irradiance on flower initiation and development were quantified to provide a basis for an inflorescence development model. The percentage of leaf axils forming an inflorescence increased as the daily integrated PPF increased from 1 to 4 mol m-2 d-1, while the rate of inflorescence development was a linear function of temperature from 18 to 26C. The appearance of a visible flower bud in the leaf axil was correlated with leaf blade length of the subtending leaf. Mathematical functions were used to describe leaf blade length at the time of visible flower bud as a function of temperature and irradiance, and also to describe the influence of temperature on the rate of leaf extension. The time of visible flower bud in the leaf axil was then predicted by measuring the current length of the subtending leaf blade and estimating the time required for the leaf blade to extend to the length required for visible flower bud appearance. A phasic development scale was used to describe the developmental status of an inflorescence from visible flower bud to anthesis. A model was then created which predicted time to anthesis based upon temperature and the current stage of inflorescence development.

Free access

James E. Faust and Royal D. Heins

Leaf unfolding rate (LUR) was determined for `Utah' African violet plants grown in growth chambers under 20 combinations of temperature and photosynthetic photon flus (PPF). A nonlinear model was used to predict LUR as a function of shoot temperature and daily integrated PPF. The maximum predicted LUR was 0.27 leaves/day, which occurred at 25C and a daily integrated PPF of 10 mol/m2 per day. The optimum temperature for leaf unfolding decreased to 23C, and the maximum rate decreased to 0.18 leaves/day as the daily integrated PPF decreased from 10 to 1 mol/m2 per day. A greenhouse experiment using 12 combinations of air temperature and daily integrated PPF was conducted to validate the LUR model. Plant temperatures used in the model predicted leaf development more accurately than did air temperatures, but using average hourly temperature data was no more accurate than using average daily temperature data.

Free access

James E. Faust and Royal D. Heins

The effect of temperature on axillary bud and lateral shoot development of poinsettia (Euphorbia pulcherrima Willd.) `Eckespoint Lilo' and `Eckespoint Red Sails' was examined. Rooted `Eckespoint Lilo' cuttings were transplanted and placed into growth chambers maintained at 21, 24, 27, or 30 °C for 2 weeks before apex removal. The percentage of nodes developing lateral shoots after apex removal was 68%, 69%, 73%, or 76% at 21, 24, 27, or 30 °C, respectively. Cuttings were removed from the lateral shoots, rooted, and placed into a 21 °C greenhouse, and the apices were removed. The percentage of nodes developing into lateral shoots on cuttings taken from plants held at 21, 24, 27, and 30 °C were 74%, 65%, 66%, and 21%, respectively. Of the cuttings in the 30 °C treatment, 83% of the nodes not producing a lateral shoot had poorly developed axillary buds or no visible axillary bud development. Visual rating of axillary bud viability decreased from 100% to 0% when `Eckespoint Red Sails' plants were transferred from a 21 °C greenhouse to a greenhouse maintained at 27 °C night temperature and 30 °C for 3 hours followed by 33 °C for 10 hours and 30 °C for 3 hours during the 16-hour day. Transfer from the high-temperature greenhouse to a 21 °C greenhouse increased axillary bud viability from 0% to 95%. Axillary buds of leaves not yet unfolded were sensitive to high temperatures, whereas those of unfolded leaves (i.e., fully developed correlatively inhibited buds) were not. Sixteen consecutive days in the high-temperature treatment were required for axillary bud development of `Eckespoint Red Sails' to be inhibited.

Free access

James E. Faust and Royal D. Heins

An energy-balance model is described that predicts vinca (Catharanthus roseus L.) shoot-tip temperature using four environmental measurements: solar radiation and dry bulb, wet bulb, and glazing material temperature. The time and magnitude of the differences between shoot-tip and air temperature were determined in greenhouses maintained at air temperatures of 15, 20, 25, 30, or 35 °C. At night, shoot-tip temperature was always below air temperature. Shoot-tip temperature decreased from 0.5 to 5 °C below air temperature as greenhouse glass temperature decreased from 2 to 15 °C below air temperature. During the photoperiod under low vapor-pressure deficit (VPD) and low air temperature, shoot-tip temperature increased ≈4 °C as solar radiation increased from 0 to 600 W·m-2. Under high VPD and high air temperature, shoot-tip temperature initially decreased 1 to 2 °C at sunrise, then increased later in the morning as solar radiation increased. The model predicted shoot-tip temperatures within ±1 °C of 81% of the observed 1-hour average shoot-tip temperatures. The model was used to simulate shoot-tip temperatures under different VPD, solar radiation, and air temperatures. Since the rate of leaf and flower development are influenced by the temperature of the meristematic tissues, a model of shoot-tip temperature will be a valuable tool to predict plant development in greenhouses and to control the greenhouse environment based on a plant temperature setpoint.