Search Results

You are looking at 1 - 10 of 30 items for

  • Author or Editor: James D. McCreight x
Clear All Modify Search
Free access

James D. McCreight

Powdery mildew is a major problem in melon (Cucumis melo L.) production worldwide. Three genes for resistance to Sphaerotheca fuliginea (Schlecht. ex Fr.) Poll. race 1 and race 2U.S. were identified in growth chamber and greenhouse tests in the cross of PI 313970 × `Top Mark'. A recessive gene conditioned resistance of true leaves to race 1. A recessive gene appeared to condition resistance of cotyledons to race 2U.S., although a second recessive gene may be involved. A semi-dominant gene conditioned resistance of true leaves to race 2U.S. Limited data suggested linkage of the recessive gene for resistance to race 1 and the semi-dominant gene for resistance to race 2U.S. The resistance reaction of PI 313970 to infection of true leaves by race 2U.S. included water-soaked spots and resistant blisters, but segregation data for the resistant blister reaction were inconclusive. Allelic relationships of these genes with previously reported melon powdery mildew resistance genes remain to be determined.

Full access

James D. McCreight

Free access

James D. McCreight

PI 414723 has received much attention from melon (Cucumis melo L.) breeders, pathologists, and entomologists for resistances to zucchini yellow mosaic and watermelon mosaic viruses, including resistances to virus multiplication and subsequent transmission by the melon aphid, powdery mildew resistance, and melon aphid (Aphis gossypii Glover). PI 414723 was derived from PI 371795, which was a contaminant in cucumber (Cucumis sativus L.) PI 175111 collected in 1948 by Walter N. Koelz in Mussoorie, Uttar Pradesh, India (altitude 1829 m). Its fruit, which have soft flesh and rind that split at maturity, are used in soups and stews, and the seeds are roasted and eaten. PI 414723, PI 371795, and the related Ames 20219 and progeny 92528a were resistant to California and Florida isolates of papaya ringspot virus watermelon strain (PRSV-W). Plants were either symptomless, or they exhibited local lesions, systemic necrosis, or systemic spots. Resistance to PRSV-W is conditioned by a single dominant gene. Allelism with Prv1 (PI 180280, Rajkot, Gujarat, India), Prv2 (PI 180283, Bhavnagar, Gujarat, India), Nm (`Vedrantais, Fance), and a recently described gene for PRSV-W resistance in PI 124112 (Calcutta, India) is yet to be determined.

Free access

James D. McCreight

Lettuce aphid (Nasonovia ribisnigri Mosley) is a recent insect pest to lettuce (Lactuca sativa L.) production in the United States. The single dominant gene, Nr, conditions resistance to the lettuce aphid in Lactuca virosa accession IVT280 from The Netherlands and is available in a limited number of commercial lettuce cultivars. New and genetically unique sources of resistance are sought to broaden the genetic base for resistance to the lettuce aphid. About 1200 lettuce PI lines were evaluated for resistance to lettuce aphid in greenhouse tests using a strain of lettuce aphid obtained from commercial lettuce in Salinas Valley, Calif. In 2002, plants were individually infested with five 24-hour nymphs per plant (controlled protocol), and the numbers of aphids per plant were counted 10–14 days post-infestation (dpi). Beginning in 2003, plants were mass-infested (mass protocol) with nymphs and alates of various ages and numbers. Using the mass protocol, the number of aphids per plant 10–14 dpi were estimated and categorized using a 1–5 scale where 1 = 0 aphids per plant, 2 = 1–10 aphids per plant, 3 = 11–20 aphids per plant, 4 = 21–30 aphids per plant, and 5 = >30 aphids per plant. `Salinas' and `Barcelona' were included as susceptible and resistant controls, respectively. Most of the accessions were susceptible. A few accessions had a few plants with very low numbers of aphids after repeated infestation, but their progeny were susceptible. Two accessions were highly resistant: PI 491093, a Lactuca serriola accession from Turkey, and PI 274378, a L. virosa accession from France. Inheritance of resistance in these two accessions and their allelism to Nr remains to be determined.

Free access

James D. McCreight

Lettuce infectious yellows virus (LIYV), transmitted by the sweetpotato whitefly, (Bemisia tabaci Genn.), seriously affected melon (Cucumis melo L.) production in the lower desert areas of the southwest United States from 1981 through 1990. Melon plant introduction (PI) 313970 was previously found resistant to LIYV in naturally infected field tests and controlled-inoculation greenhouse tests. Data from F1 and segregating generations from crosses of PI 313970 with LIYV-susceptible lines indicated that resistance in this accession is conditioned by a dominant allele at a single locus designated Lettuce infectious yellows (Liy).

Free access

James D. McCreight

Lettuce aphid, Nasanovia ribisnigri (Mosely) (Homoptera: Aphididae), is an economically important pest of lettuce (Lactuca sativa L.). High-level resistance found in a wild relative, Lactuca virosa L. accession PIVT 280, is conditioned by the Nr gene, which has been transferred to European cultivars and is being commercially transferred to U.S.-adapted cultivars. New sources of resistance to guard against possible resistance-breaking strains of lettuce aphid were sought in a greenhouse screening of 1203 accessions of lettuce, which included 1047 accessions of L. sativa L., seven accessions of Lactuca perennis L., 18 accessions of Lactuca saligna L., 125 accessions of L. serriola L., and six accessions of L. virosa L. Two new and potentially unique sources of resistance to lettuce aphid were found in L. serriola accession PI 491093 and L. virosa accession PI 274378. The genetic relationship of resistance in PI 491093 and PI 274378 with that in PIVT 280 remains to be determined.

Free access

James D. McCreight

Powdery mildew is a serious disease of melon (Cucumis melo L.) worldwide. Twenty-two melon cultigens have been used to define 22 reported races of the pathogen Podosphaera xanthii (sect. Sphaerotheca) xanthii (Castag.) U. Braun & N. Shish. Comb. nov. [syn. Sphaerotheca fuliginea (Schlecht. ex Fr.) Poll.]. Discrepancies in the reactions of eight cultigens to populations of P. xanthii races 1 and 2 in California, Japan, and Spain revealed genetic differences among them that can be used to differentiate P. xanthii race 1 and 2 populations in these countries. Implicit in these results is the existence of previously unknown virulence factors in these populations of P. xanthii races 1 and 2 that permit designation of new races of P. xanthii on melon. Synthesis of these results with previous reports resulted in the identification of 28 putative races of P. xanthii on melon that include eight variants of race 1 and six variants of race 2. Six of the cultigens exhibited resistant blisters in response to heavy infection by P. xanthii in field and greenhouse tests.

Free access

James D. McCreight

Free access

Valerie Haley and James D. McCreight

Segregating generations from crosses of cultivated lettuce (Lactuca sativa L.) with wild lettuce (L. saligna L.) are affected by sterility and abnormal growth. Resistance to lettuce infectious yellows virus (LIYV) was, therefore, studied in crosses of previously reported LIYV-resistant (PI 261653) with LIYV-susceptible (PI 490999, PI 491000 and PI 491001) L. saligna accessions. Simple Mendelian ratios for resistance (measured as numbers of symptomless and symptomatic plants, and as number of symptomatic leaves per plant) to LIYV were not evident. PI 491001 had the fewest symptomatic plants and the fewest symptomatic leaves per plant. The potential value of L. saligna for development of LIYV-resistant cultivated lettuce will be discussed.

Free access

Valerie Haley and James D. McCreight

Segregating generations from crosses of cultivated lettuce (Lactuca sativa L.) with wild lettuce (L. saligna L.) are affected by sterility and abnormal growth. Resistance to lettuce infectious yellows virus (LIYV) was, therefore, studied in crosses of previously reported LIYV-resistant (PI 261653) with LIYV-susceptible (PI 490999, PI 491000 and PI 491001) L. saligna accessions. Simple Mendelian ratios for resistance (measured as numbers of symptomless and symptomatic plants, and as number of symptomatic leaves per plant) to LIYV were not evident. PI 491001 had the fewest symptomatic plants and the fewest symptomatic leaves per plant. The potential value of L. saligna for development of LIYV-resistant cultivated lettuce will be discussed.