Search Results

You are looking at 1 - 10 of 58 items for

  • Author or Editor: Jack E. Staub x
Clear All Modify Search

A teaching module was developed for computer-aided instruction of mutation theory. The Hypercard-driven, Macintosh compatible module illustrates the concepts of: 1) Changes in allele frequency with mutation pressure; 2) Number of alleles maintained in populations, and; 3) The Neutrality Hypothesis. The concepts are integrated in an application by using a game format.

Mutation is the ultimate source of genetic variation. Mutation pressure results in changes in allele frequency. Concept 1 illustrates the theoretical changes in allele frequency under pressure of reversible mutation. Mutation equilibrium is depicted as P=V/u+v; where v=mutation rates of allele A and u of allele a. The Infinite-Alleles Model of mutation is illustrated in Concept 2 and specifies characteristics of new mutations by F=1/4Nu+1, where F=fixation index and N=number in population. Concept 3 demonstrates the hypothesis that polymorphisms result from selectively neutral alleles maintained in a balance between mutation and random genetic drift.

Free access

A fruit anomaly, pillowy (P), has been identified in processing cucumber This physiological disorder has been shown to be accelerated by water stress.

A series of experiments were conducted to determine postharvest handling procedures which minimize the appearance of pillowy after induction by water stress. Isogenic lines evaluated in RCB design with 3 replications where subjected to water stress during fruit enlargement. Fruits were then subjected to various storage temperatures and times before hydrocooling to 8°C. Cucumbers were then fresh pack processed and evaluated for % pillowy after 12 weeks,

The postharvest control treatmcnt (2 days, 26°C, 60% RH) produced 32%P to 51%P in fruit subjected to stress and 23%P to 39%P in unstressed fruit. In the optimal postharvest treatment (1 day, 26°C, 60% RH, then hydrocool to 8°C, 2 days, 15°C, 85% RH) fruits from stress plants exhibited 23%P to 39%P and those from nonstress plants showed 13%P to 26%P. Fruits from miniature leaf lines exhibited higher percent (37%) P ratings when compared to normal leaf lines.

Free access
Authors: and

Plant improvement incorporating quantitatively inherited yield component traits is technically difficult, time consuming, and resource demanding. In melon (Cucumis melo L.), the inheritance of yield components is poorly understood. A unique highly branched fractal melon plant type has been developed by the U.S. Department of Agriculture (USDA) from exotic germplasm to improve yield of U.S. Western Shipping type melons (Group Cantalupensis). In order to more effectively develop useful germplasm for commercial use the genetic of components of yield must be clearly understood. Thus, the genetics of branching, an important yield component, was investigated. Melon progeny derived (F1, F2, F3, BC1P1, and BC1P2) derived from a cross between USDA line 846-1 (P1) and Top-Mark (P2) were used to evaluated in two locations (Wisconsin and California) to estimate of components of variance, and narrow-sense (h2N) and broad-sense (h2B) sense heritabilities. Lateral branch numbers among 71 to 119 F3 families were significantly different (P ¾ 0.01) regardless of test environment. Covariance analyses indicates that branching is moderately heritable (h2B = 0.62 to 0.76, h2N = 0.43 to 0.48), and conditioned by several additive factors (perhaps 2 to 4) that are highly additive. Although environment plays an important role in lateral branch development, family rankings over environments were relatively consistent, indicating that effective selection for this trait should be useful for incorporating the fractal plant habit into Western Shipping melon. The significant additive component underlying lateral branch number indicates that quantitative trait loci (QTL) conditioning this yield component might be identified for use in marker-assisted selection.

Free access

A teaching module was developed for computer-aided instruction of mutation theory. The Hypercard-driven, Macintosh compatible module illustrates the concepts of: 1) Changes in allele frequency with mutation pressure; 2) Number of alleles maintained in populations, and; 3) The Neutrality Hypothesis. The concepts are integrated in an application by using a game format.

Mutation is the ultimate source of genetic variation. Mutation pressure results in changes in allele frequency. Concept 1 illustrates the theoretical changes in allele frequency under pressure of reversible mutation. Mutation equilibrium is depicted as P=V/u+v; where v=mutation rates of allele A and u of allele a. The Infinite-Alleles Model of mutation is illustrated in Concept 2 and specifies characteristics of new mutations by F=1/4Nu+1, where F=fixation index and N=number in population. Concept 3 demonstrates the hypothesis that polymorphisms result from selectively neutral alleles maintained in a balance between mutation and random genetic drift.

Free access

The cucumber (Cucumis sativus L.) germplasm collection of 924 cultigens (accessions, breeding lines and cultivars) was evaluated for resistance to anthracnose (Colletotrichum orbiculare (Pass.) Ell. & Halst) in the field and greenhouse. The field test was run using 1 m plots grown in 4 environments (year-location combinations). The field was inoculated 3 weeks after planting using a backpack sprayer. A susceptible spreader cultivar (Wis. SMR 18) was planted every 5th row, and plots were overhead-irrigated 3 times/week. Plots were rated 1 and 2 weeks after inoculation. The greenhouse test was run using seedlings grown in flats of vermiculite, and inoculated with 104 spores/ml on one cotyledon. Plants were rated using the size of the chlorotic halo surrounding the lesion. There was no correlation (r=0.04 to 0.17) of seedling test with field test ratings, nor between any of the 4 field test environments. Correlations were significant among field tests when only cultivars and breeding lines were evaluated. We concluded that diversity within accessions resulted in the lack of correlation among tests. The cultigens that had high resistance in all tests were `Slice', NCSU M 21, Gy 14A, `Addis' and PI 164433 (India). Most susceptible were PI 175696 (Turkey) and PI 285606 (Poland).

Free access

Development projects in developing countries are generally considered to be speculative investments. Potentially significant returns on investment opportunities are often overlooked by assuming that investment risks in developing countries are greater or less manageable than the risks of investment in developed countries. An import purchasing-risk evaluation identified the costs associated with the production and export of processing cucumbers (Cucumis sativus L.) from Hispaniola (Haiti and the Dominican Republic) to the United States. Although production and export analyses suggested that Hispaniola might not replace Mexico as the primary source of cucumbers for processing in the United States between November and April, Hispaniola affords the U.S. processing industry with an alternative investment option for reducing single-sourcing raw product risk. Therefore, an import diversification evaluation was conducted using Monte Carlo simulation to define a investment-risk model. Monte Carlo simulations of the means and variances of the components of cost andprice were used to assess investment risk under various investment strategies. This model identified sources of cost variation which were then used to characterize export risks derived from growing processing cucumbers on Hispaniola. It was determined that U.S. processors can reduce overall purchasing-risk by diversifying Mexican production to Hispaniola. Through the creation of a strategic transportation alliance between the U.S. and Hispaniola project participants, the export-import costs were such that the investment-risk model identified the allocation of 80% of the production in Mexico and 20% in Haiti as the most favorable diversification strategy. This strategy offered less risk and greater potential long-term returns than purchasing cucumbers solely in Mexico.

Full access

The available U. S. Cucumis sativus germplasm collection (754 Plant Introductions) was electrophoretically screened for genetic diversity using 39 enzymes representing a total of 57 loci. Polymorphisms were observed at 18 loci which included g2dh, gpi1, gpi2, gr1, gr2, idh, mdh1, mdh2, mdh3, mpi2, pep-la2, pep-pap2, per4, pgd1, pgd2, pgm1, pgm3, and skdh. Appropriate crosses were set up to verify the inheritance of and test linkages among these loci. Four allozyme linkage groups have currently been identified. Representative linkages and their genetic distances include: gpi1 - mdh3 (20); pgm1 - pgd1 (25); and g2dh - pgd2 (19). Additionally, crosses were made to marker stocks to test for linkages between some allozyme loci and loci coding for resistance to downy mildew and anthracnose, long hypocotyl, divided leaf, short petiole, glabrous, compact plant, determinate, little leaf, and bitter free (bi).

Free access

During winter months, a substantial volume of various horticultural products are imported to the United States from the Caribbean and Central and South America. United States cucumber (Cucumis sativus L.) processors who market fresh-pack and refrigerated products require raw product daily to meet consumer demands. Mexico serves as a single-source supplier to all United States processors during this period, and thus Mexican production represents certain price risks. United States processors would consider other growing regions to reduce these risks if financially attractive alternatives could be identified. Therefore, a project was initiated to acquire information on production and export costs in Hispaniola (Dominican Republic and Haiti), and to compare those to Mexican and United States production and transport costs. Experimentation lead to the identification of the critical influences of market prices, costs and conditions for the financial feasibility of establishing a processing cucumber industry on Hispaniola. Comparative evaluation indicated that significant variation in total cost was caused by fluctuations in transport, tariffs, and labor cost components. The causes of variation in transportation costs were distance, method (sea, air, truck), competitive demand (volume), and shipping frequency, consistency, and capacity.

Full access

Two experiments (1989 and 1990) were designed to characterize the response of cucumber (Cucumis sativus L.) plants with different leaf types [normal leaf (LL) vs. little leaf (ll)] to high soil moisture tension (SMT) and to determine whether hydrocooling would reduce the severity of pillowy fruit disorder (PFD). Comparisons were made among nine cultivars (7 LL and 2 ll) for aboveground vegetative and fruit response, and between two irrigation regimes. High SMT generally caused increased wilt ratings and stomatal conductance and decreased plant dry weight. PFD severity of fruit from watered plots was less [61% (Expt. 1, 1989) and 26% (Expt. 1, 1990)] than of fruit harvested from plots in which water was withheld. The response of the two ll cultivars to moisture stress differed depending on environmental conditions. Increased PFD severity was associated with increased temperature, lower relative humidity (RH), and excluding hydrocooling during postharvest handling. Of the four storage treatments examined, hydrocooling to ≈8.5C then storage at 15C and 85% RH for 4 days produced fruit with the least PFD symptoms. Fruit of `Carolina' (LL) exhibited the highest PFD ratings, while those of `Calypso' (LL) were consistently low compared to other cultivars. Processors can lower PFD incidence and severity by ensuring that adequate moisture is available to plants during fruit enlargement and that harvested fruit are hydrocooled before shipping and storage.

Free access