Search Results
Golf facilities account for 2.3 million acres in the United States. Numerous turfgrass species are managed on US golf facilities, but golf facilities may change turfgrasses depending on numerous variables. Knowing which turfgrasses are grown and how turfgrass selection has changed would provide important information to scientists, turfgrass managers, and policymakers. The objective of this survey was to measure turfgrass use on US golf facilities in 2021 and to determine whether changes in turfgrass selection have occurred since 2005. A survey was developed and distributed via e-mail to 13,938 US golf facilities, with 1861 responding. From 2005 to 2021, the total projected area of maintained turfgrass on US golf facilities decreased by 14.2%, which was likely a result of course closures and maintenance operations. Nationally, bermudagrass (Cynodon sp.) and Kentucky bluegrass (Poa pratensis) remained the most common warm- and cool-season turfgrasses, respectively. The area of winter-overseeded turfgrass declined by 60% between 2005 and 2021. The percentage of golf facilities that used zoysiagrass (Zoysia sp.) and seashore paspalum (Paspalum vaginatum) increased depending on region and specific playing surface, albeit a pragmatically minor increase. In general, turfgrass selection on golf facilities in northern climates did not change, whereas turfgrass selection in southern climates favored a change from cool- to warm-season species, depending on the playing surface. Whether in historically cool-season or warm-season regions, it appears that many golf facilities are exploring alternatives to their traditional turfgrass species.
Chemical rates for commercial apple orchards are derived from replicated single-tree spray studies based upon dilute (>3740 l/ha) amounts of carrier to standard trees and are not adjusted to tree size. The purpose of this study was to evaluate a season long pest management program where rates had been reduced to 60% of standard recommended rates on trellised apple trees. The experimental unit consisted of 4 trellised rows of apples planted in 1976. The cultivars in the study were `McInstosh', Golden Delicious, and spur and nonspur `Delicious'. Treatments were full rate (100), 60% of the full rate (60) and a control (0). Disease and insects damage was monitored periodically throughout the season and damage was assessed at harvest on the spur `Delicious' and `Golden Delicious' fruit. During the experiment it was discovered that the orchard used had developed resistance to benomyl resulting in some apple scab present even in the 100 treatment. There was a reduction in the level of scab however in the 60 and the 100 trt compared to the 0 trt. At harvest the major diseases observed in the 0 trt blocks was sooty blotch and flyspeck. Insect damage was minimal. Results from the study suggest that pesticide rates may be reduced by 40% with little impact upon fruit quality.
Apple orchards are highly diversified and complex ecological and economic systems. Production is affected by a wide range of insects, diseases, weeds, and mammalian pests. The incidence of these pests is often dependant upon climatological effects; and the microclimate within orchards. An expert system, a form of artificial intelligence, has been developed and commercially released to apple growers that utilizes weather data to make recommendations regarding production decisions. Users of the system are instructed on how to establish a weather station, and to collect, and input weather data from the farm. The information is utilized to calculate disease infection periods and pesticide residues to arrive at a control recommendation. Other weather dependant modules include the scheduling of trickle irrigation as well as water application rates during a frost. An interactive demonstration of the system will be presented to the group.
Decreasing resources and increasing complexity of horticultural crop production necessitate that new technologies be developed to transfer information to commercial producers. Expert systems (ES) have been cited as potential tools that can facilitate knowledge transfer. The definitions of an expert system, however, technically only indicates a computer program that simulates the thought processes of a human expert and, as such, does not supply all the facets necessary to assist commercial producers. The combination of databases, graphic capabilities, and textual information into a comprehensive program would provide a more complete package. To differentiate the two, we use the term decision support systems (DSS). The development, testing, and release of DSS, however, require greater commitment and interdisciplinary cooperation. Developing DSS fosters interstate, interregional, and international cooperation among researchers and extension personnel. Using systems developed in fruit production as examples, we outline the value of DSS to promote cooperation, the resources necessary to develop these systems; and the attitudinal change necessary to build the systems.
Nutrient use on United States golf courses increases management costs and has the potential to influence ecosystems. Therefore, it is critical to assess nutrient use and management practices to develop and teach best management practices. The objectives of this survey were to measure nutrient use and management practices on United States golf courses in 2021, and to determine if changes occurred since 2006. A survey was developed and distributed via e-mail to 14,033 United States golf facilities, with 1444 responding. From 2006 to 2021, the total projected nitrogen (N), available phosphorus (P2O5), and soluble potash (K2O) applied declined by 41%, 59%, and 54%, to 54,376, 13,761, and 41,386 tons, respectively. These reductions were attributed to course closures, reduced fertilized acres, reduced application rates, and nutrient use restrictions. The percentage of facilities that did not apply P2O5 increased to 21%, which is likely a result of P2O5 application restrictions. Soil testing was associated with greater application rates of N, P2O5, and K2O. Returning clippings, using precision fertilizer applications, reducing turfgrass acreage, and considering N release from soil organic matter were associated with reduced application rates of P2O5. Golf course superintendents have contributed to nationwide reductions in N, P2O5, and K2O, as evidenced by the reduction in fertilized acres and the reduction in nutrient use rates from 2006 to 2021.
Integrated pest management (IPM) is an important component of golf course maintenance and includes conventional chemical pesticide use as well as nonchemical cultural management practices. Determining how frequent pest management practices are used on golf courses is critical when developing educational and outreach programs. The objective of this study was to determine the frequency of pest management practices and pesticide mixing and storage facilities on US golf courses. A survey was sent to 14,033 operational US golf facilities with 10% responding. Reliance on all conventional chemical pesticides increased from 2015 to 2021. The reliance on biological control products declined to 14% and reliance on the nonpesticide practice of using plant growth regulators remained equivalent to 2015. The most common pest management practices included monitoring weather patterns and scouting for pests, with 93% of golf facilities reporting the use of both. The use of written IPM and pesticide application plans increased from 44% to 63% of golf facilities between 2015 and 2021, respectively. Generally, mixing and storage facilities remained unchanged from 2015 to 2021. US golf facilities continue to use nonchemical pest management practices, but reliance on chemical pesticides has increased.
Golf facilities require a large area and consume energy to operate. As such, golf facilities have the potential to influence ecosystems and contribute to national and regional energy demands. The objective of this study was to document the land-use and energy practices of US golf facilities in 2021 and to determine if changes have occurred since 2005. A survey was distributed via e-mail to 13,938 US golf facilities, with 1861 responding. From 2005 to 2021, the projected acres of maintained turfgrass declined by 14.2%, whereas the median maintained turfgrass acreage declined by 3.0% indicating the decline in projected acres was likely a result of facility closures. In 2021, water features, turfgrass, and natural areas accounted for 92% of the total projected facility acres. More golf facilities used cleaner energy sources, such as natural gas and solar-electric, and fewer golf facilities used gasoline and diesel in 2021 than in 2005. The percentage of golf facilities at which behavioral changes were implemented to decrease energy use declined but design changes increased from 2005 to 2021. Golf facilities became more land and energy efficient from 2005 to 2021 by reducing the acreage of maintained turfgrass and increasing the use of clean energy sources, but room for improvement still exists in human behaviors that affect energy use.