Search Results

You are looking at 1 - 10 of 54 items for

  • Author or Editor: J.W. Scott x
Clear All Modify Search
Free access

J.W. Scott

Plant breeders would welcome new tools to improve selection efficiency for complex traits such as improved flavor, especially since this is only one of many complex traits that a breeder has to integrate into improved cultivars. Using tomato (Lycopersicon esculentum Mill.) flavor as an example, a major obstacle to improvement is the lack of measurable traits to select for. It has been suggested that improved flavor can be achieved by increasing the soluble solids and acidity. Both of these traits are not simply inherited, but if fruit sampling is adequate, they can be measured and selected. Studies have located several molecular markers linked to high soluble solids, but some are also linked to undesirable traits such as small fruit size or low yield. Thus, the molecular markers are not being used in breeding programs at this point. Moreover, other studies have shown that flavor is also influenced by an array of aromatic volatiles. The importance of some of the volatiles has been reported, but the volatile profile that consistently results in superior tomato flavor is still not known. Molecular manipulation of a biochemical pathway has been done to increase the concentration of one volatile with positive results. However, this manipulation does not solve the overall flavor improvement problem. Furthermore, environment plays a profound role in tomato flavor, and this aspect needs to be dealt with if a branded high-quality product is to be successfully marketed. There are also flavor issues related to fruit firmness, pedicel type, and plant habit. In summary, molecular techniques may be useful in providing some incremental improvements for complex traits like tomato flavor, but more knowledge about targets to manipulate is required. There does not appear to be any cheap or easy solutions. If molecular approaches are to be commercially successful, they will have to be tied closely to a breeding program dedicated to the same goal.

Free access

J.W. Scott and J.P. Jones

Lycopersicon pennellii accession LA 1277 was crossed to tomato (L. esculentum) and the F1 was backcrossed to tomato. Self-pollinated seed was saved from backcross plants and seedlings derived were inoculated with Fusarium oxysporum Schlecht f.sp. radicus-lycopersici Jarvis and Shoemaker, the causal agent of Fusarium crown and root rot (FCRR). Seed was saved from resistant plants that were self-pollinated and screened until homozygous resistance was verified five generations after the backcross. Three homozygous lines were crossed to Fla. 7547, a tomato breeding line susceptible to FCRR but resistant to Fusarium wilt races 1, 2, and 3. Subsequently, backcrosses were made to each parent and F2 seed were obtained. The three homozygous FCRR-resistant lines were also crossed to Ohio 89-1, which has a dominant gene for FCRR resistance presently being used in breeding programs. F2 seed were obtained from these crosses. These generations were inoculated with the FCRR pathogen. The resistant parents, F1, and backcross to the resistant parents were all healthy. The backcross to the susceptible parent and the F2 segregated healthy to susceptible plants in 1:1 and 3:1 ratios, respectively. Thus, the resistance from LA 1277 was inherited as a single dominant gene. This gene was different than the gene from Ohio 89-1 because susceptible segregants were detected in the F2 generation derived from the two resistant sources.

Free access

J.W. Scott and J.P. Jones

Forty-two Lycopersicon pennellii Corr. D'Arcy accessions, from the Tomato Genetics Stock Center, were inoculated for resistance to Fusarium wilt race 3 at the 3-leaf and cotyledon stage. All were over 90% healthy when inoculated at the 3-leaf stage but had greater disease incidence at the cotyledon stage. Crosses were made between healthy plants within each accession. Using this seed, 39 accessions were 100% healthy and 3 were over 96% healthy when inoculated at either stage. Seventeen F1's with susceptible parents were tested for race 3 and all had over 80% healthy plants. Twenty-two accessions were tested for Fusarium wilt race 1 and race 2. For race 1, 21 were 100% healthy and 1 was 91% healthy, For race 2, 20 were 100% healthy, 1 was 96% healthy, and 1 was 75% healthy. Forty accessions were screened for Fusarium crown rot and Verticillium wilt. For crown rot, LA 1277, LA 1367, and LA 1657 were over 95% healthy, 6 other accessions were over 68% healthy and several others had over 50% healthy plants, All 40 were susceptible to Verticillium wilt race 1. L. pennellii appears to be a good source of resistance to Fusarium sp. but not to Verticillium wilt.

Free access

J. W. Scott and C. L. Emmons

Ten tomato cultigens were crossed with L. peruvianum accessions PI 126443 and PI 129152. Fruit (536 total) were harvested between 15 and 65 days after anthesis (DAA). Culturable embryos were obtained from 13% of the fruit. There were 140 embryos plated, from which 36 plants were obtained (7% of fruit, 26% of embryos plated). 'Campbell 28', Fla. 7217, and Fla. 7182 were the most efficient tomato lines for producing F1 plants, there was no difference between the L. peruvianum accessions. No embryos were obtained beyond 57 DAA. No trend in embryo viability was detected between 15 and 56 DAA. Of 248 backcross fruit, 94 embryos were plated (38% of fruit) and 15 plants were obtained (6% of fruit, 16% of embryos plated). Female parents with the best percentage of plants per fruit crossed were Fla. 7217, Fla. 7215, and 'Campbell 28' with 15, 8, and 7%, respectively. No plants were obtained from 45 crosses on Fla. 7182.

Free access

J. W. Scott and Elizabeth A. Baldwin

Fruit of 10 tomato (Lycopersicon esculentum Mill.) cultigens, including five typical fresh market F1's, two rin/ + F1's, two very firm (ultrafirm) inbreds, and an antisense PG F1, were harvested at mature green, breaker, and table ripe stages of development, passed over a grader and taken to a lab (21°C) for analyses of soluble solids, titratable acidity and firmness at the table ripe stage. Shelf life was also measured. Cultigens varied in response to both solids and acids at the three harvest stages, thus there was no clear effect of harvest stage on these variables. The rin /+ F1's and ultrafirm inbreds were significantly firmer than the other cultigens at the table ripe and breaker stages. Shelf life tended to decrease with maturity at harvest. One rin /+ F1 had the greatest shelf life at all harvest stages. Ultrafirm and antisense PG cultigens had greater shelf life than the other six cultigens at the table ripe stage.

Free access

P.D. Griffiths and J.W. Scott

Tomato mottle virus (ToMoV) is a silverleaf whitefly (Bemisia argentifolii Bellows and Perring n. sp.) transmitted, bipartite geminivirus that infects tomatoes (Lycopersicon esculentum Mill.). Inbred lines resistant to ToMoV were derived from Lycopersicon chilense Dunal accession LA 1932. Inheritance was studied using a family developed from the crossing of a resistant inbred with a susceptible tomato inbred over two seasons. The F1 had resistance intermediate to the parents and generation means analysis of F1 and F2, backcross and parental populations suggested that the action of at least two additive genes with high heritability (h2 n.s. = 0.87) controlled ToMoV resistance. When data from the two seasons were combined, an acceptable fit to an additive-dominance genetic model was obtained. Single plant comparisons, bulk comparisons, and tailends of F2 populations segregating for ToMoV resistance derived from LA 1932 identified randomly amplified polymorphic DNA (RAPD) markers using eight hundred 10-mer oligonucleotide primers. The F2 populations used for inheritance studies were screened for polymorphic markers, and 12 RAPD markers associated with the ToMoV resistant line were linked to the morphological markers self-pruning (sp) and potato leaf (c) on chromosome 6. RAPD markers that were associated with ToMoV resistance segregated into two linked regions flanking either side of the sp and c loci. The molecular studies suggested that the action of at least two additive regions controlled ToMoV resistance which supported the inheritance analysis.