Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: J.T. Yeager x
Clear All Modify Search
Free access

Stephen M. Southwick, W. Krueger, J.T. Yeager and J. Osgood

French prunes (Prunus domestica L.) on myrobalan seedling rootstock were planted in 1981 in an east-west direction with 4.9 m between rows and 2.7 m between trees on a poorly drained Class II soil in Glenn County, CA. A randomized complete block design was used with 8 trees per plot. Trees were pruned by hand to an open-center tree form or pruned by machine to a pyramid form in the dormant or summer season resulting in 6 pruning treatments. This high density system has led to high yields of good quality fruit (9.18 dry tons/acre in 1989, sized at 78 fruit per pound). Hand pruning led to higher yields, larger fruit, lower drying ratios and a greater dollar return per acre than any of the machine pruned trees. Dormant machine pruning led to larger fruit produced than those trees pruned in the summer by machine. Mechanical pruning may be possible for short time periods, but continued practice led to smaller fruit with lower yields than hand pruning. Certain locations within the tree canopy had smaller fruit size and it is within those lower locations where fruit size needs to be improved. These and additional experimental results obtained from 1987 through 1989 growing seasons will be presented.

Free access

S. M. Southwick, K. Shackel and J. T. Yeager

`Bing' sweet cherry is the most widely planted cultivar grown in the Western US because of widespread market acceptance. High prices are associated with early maturing `Bings' so growers are inclined to plant in early maturing growing regions. High numbers of less marketable, abnormally shaped (deep sutures, spurs, doubles) fruit tend to be produced in these regions. It is thought that abnormal fruit development is associated with high summer temperatures. Dataloggers equipped with thermocouples were located in 7 California cherry growing regions. Thermocouples were positioned throughout tree canopies, monitoring flower bud temperatures for 2 seasons from May to October. A Richard's function was used to describe the relation of average daily temperature (July, August, September to the percentage of fruit with deep suture. Correlation coefficients (R2) of 0.85 and higher were found, with increases in average daily temperatures above 22C associated with the formation of abnormal fruit shapes. Heat lamps were used to increase spur temperatures 5-7C above ambient during the July through September period, High percentages of abnormal flowers were produced in the season after 2 July, but not after 21 August heating, Strategies to lower high summer canopy temperatures helped to reduce abnormal fruit shapes.

Free access

Frank T. Yoshikawa, G.C. Martin, D. Ramos and J.T. Yeager

Various rates of Wilthin were applied at full bloom to limbs carrying 150 to 250 flowers to study their activity on blossom thinning of `Loadel' peaches. Wilthin applied at 0.75% and 1.0% significantly reduced fruit set to 29% and 30%, respectively, while the control produced 94%. The effectiveness of the 0.75% rate was dramatic, but it is interesting to note that the 1.0% rate did not lead to excessive thinning nor phytotoxicity on foliage or fruit. More extensive studies need to be done to fully determine the potential of this material. However, these results suggest that further testing of Wilthin on a larger scale is warranted.

Free access

S.M. Southwick, S.A. Weinbaum, T.T. Muraoka, W.R. Krueger, K.A. Shackel and J.T. Yeager

Leaf dry weight per leaf area (LDW/LA); weight of leaf N per unit leaf area (LN/LA); leaf dry weight (LDW); and fruit quality, particularly sugar per fruit (SF); fruit fresh weight (FFW); and fruit dry weight (FDW) were measured over a range of daily average incident photosynthetic photon flux values (PPF) (50 to 1000 μmol·s-1·m-2) in 7-year-old prune (Prunus domestics L. syn. `Petite d'Agen') tree canopies. Linear or curvilinear relationships between these leaf attributes and fruit characteristics were significant over the PPF range. Analysis of LDW/LA or LN/LA may be used to indicate tree canopy locations in which fruit size and quality is limited by suboptimal PPF.

Free access

K.G. Weis, S.M. Southwick, J.T. Yeager, W.W. Coates and Michael E. Rupert

The years 1995 and 1996 were low chill years in California with respect to stone fruit dormancy. Advancing reproductive budbreak and flowering was accomplished in `Bing' cherry (Prunus avium) by single-spray treatments of a surfactant {a polymeric alkoxylated fatty amine [N,N-bis 2-(omega-hydroxypolyoxyethylene/polyoxypropylene) ethyl alkylamine]} and potassium nitrate in combination when applied at “tightbud,” ≈ 42 days (1 Feb. 1995) before full bloom and with surfactant and potassium nitrate in combination when 10% green calyx was apparent, 33 days before full bloom. Applying 2% surfactant (v/v) + 6% potassium nitrate (w/v) was most effective in advancing bloom, speeding progression through bloom, and advancing fruit maturity when applied at tightbud stage. Surfactant (2% or 4%) applied with 25% or 35% calcium nitrate (w/v) on 2 Feb. 1996 significantly advanced full bloom compared to nontreated controls. Fruit maturity (1995) was somewhat advanced by surfactant–nitrate treatments, but fruit set and final fruit weight were equivalent among treatments. No phytotoxicity was noted in foliage or fruit. In California, marginal and insufficient winter chilling often causes irregular, extended, or delayed bloom periods, resulting in poor bloom-overlap with pollenizers. As a result, flower and fruit development may be so variable as to have small, green and ripe fruit on the same tree, making harvest more time consuming and costly. Data indicate that this surfactant, in combination with a nitrogenous compound, has potential to advance reproductive budbreak and advance maturity in sweet cherry without reducing fruit set or fruit size. Advancing the ripening time of sweet cherry even 2 to 3 days can increase the price received per 8.2-kg box by $10 to $20.

Free access

Suat Irmak, D.Z. Haman, A. Irmak, J.W. Jones, B. Tonkinson, D. Burch, T.H. Yeager and C. Larsen

This research study evaluates the effectiveness of a recently introduced irrigation-plant production system, multipot box system (MPBS), for moderating root zone temperature (RZT) compared with the conventional nursery containers. The study also deals with the development, calibration, and validation of a series of models that can be used to predict maximum (max) and minimum (min) RZTs using commonly available input variables. The Viburnum odoratissimum (Ker.-gawl.) was used as the test plant. Models were calibrated in the fall growing season and validated during the summer. The RZT was used as the dependent variable while the max and min air temperatures (Tmax and Tmin) and/or incoming solar radiation (Rs) were used as independent variables. The color of the MPBS had an effect on plant growth. Plants grown in the white MPBS had higher growth indices, shoot and root dry weights, and number of stems as compared with the plants in the black MPBS or the conventional (control) system (CS). White MPBS maintained cooler RZTs than the max air temperature during both seasons. Also, white MPBS maintained cooler RZTs than the black MPBS and CS during the two seasons. In both seasons, water temperature in the black MPBS was higher than the temperature in the white MPBS contributing to the high RZTs in the black MPBS. The RZT of the black MPBS and CS exceeded the critical value (40 °C), which is cited in the literatures as negatively impacting root growth, water and nutrient uptake, leaf area, plant survival, root and shoot dry weights, water status, and photosynthesis. The RZT in the CS was above 45 °C for most of the summer season and plants were exposed to this extreme temperature for a few hours a day during most of the summer. The white MPBS provided a better environment and enhanced plant growth. For regions where ambient air temperature ranged from 2 to 41 °C, the white MPBS can provide adequate and effective RZT protection for plants grown in No. 1, 3.8-L standard black conventional containers. Predicted RZT values were well correlated with measured values in all systems. Rs did not have an effect on predicting RZTmax in the MPBS treatments. Wind speed did not contribute to predicting RZT in any production systems. The root mean square error between measured and predicted RZT was relatively low ranging from 0.9 to 2.8 °C. Models were able to explain at least 74% of the variability in RZTs using only Tmax, Tmin, and/or Rs. Models developed in this study should be applicable for estimating RZTs when similar management and cultural practices are present. Models of this study are practical, simple, and applicable to predict RZTs where ambient air temperature ranges from 1.9 to 40 °C. Model results should not be extrapolated beyond these limits.

Free access

K.G. Weis, S.M. Southwick, J.T. Yeager, M.E. Rupert, R.E. Moran, J.A. Grant and W.W. Coates

In continuing trials (1995-current), we have used a variety of treatments to overcome inadequate chilling, coordinate bloom, improve leaf out and cropping, and advance/coordinate maturity in sweet cherry, cv. Bing. Treatments have included hydrogen cyanamide (HCN, Dormex) and various surfactants or dormant oils combined with calcium ammonium nitrate (CAN17). Chill hour accumulation, (required chilling for `Bing' = 850 to 880 chill hours) has varied greatly in each dormant season from 392 (Hollister, 1995-1996) to adequate, depending both on the season and location (central valley vs. coastal valley). In 1998, 4% HCN advanced budbreak significantly compared to any other treatment, although other chemical treatments also were more advanced than the untreated control. Dormex advanced completion of bloom 11% to 40% more than other treatments, although other dormancy-replacing chemicals were at least 16% more advanced in petal fall than the untreated control. Dormex contributed to slightly elevated truss bud death, as did 2% Armobreak + 25% CAN17. In 1998, fruit set was improved by 2% Armobreak + 25% CAN17 (79%) compared to the untreated control (50%); all other treatments statistically equaled the control. Fruit set was not improved by Dormex, although bloom was advanced by a few days in this treatment. As fruit set was increased by treatments, rowsize decreased (as did fruit weight), as expected, but no treatment resulted in unacceptable size. In 1997, fruit set was also improved by 2% Armobreak + 25% CAN17; however, fruit set was so low overall in that year that no real impact was found. In 1997 and 1998, 4% HCN advanced fruit maturity compared to other treatments, with darker, softer, larger fruit at commercial harvest. These and additional results will be presented.

Free access

S.M. Southwick, M.E. Rupert, J.T. Yeager, K.G. Weis, B.C. Kirkpatrick, E.L. Little and B.B. Westerdahl

Bacterial canker (BC), caused by Pseudomonas syringae pv. syringae van Hall, is a serious disease of stone fruits that occurs most commonly in young orchards. Many factors can predispose or increase the risk that trees develop BC such as sandy or compacted soils, low soil pH, inadequate tree nutrition, frost or cold injury, genetic susceptibility, and presence of ring nematode, Criconemella spp. However, questions still remain about how these factors influence disease incidence in `French' prune, Prunus domestica L. In 1991, we established a 3.64-ha plot in Winters, Calif., to determine the effects of nitrogen (N) fertigation on growth responses and yield of young prune trees. N was applied through a surface drip system at 0, 0.11, 0.23, and 0.45 kg actual N/tree per year as UN32 urea (Unocal, Sacramento Calif.) with 1/10th of the total amount delivered per application every other week from May through September starting in 1992. Two other treatments were also included: 0.064 kg N/tree per year through surface drip if % leaf N dropped below 2.3%, and 0.23 kg N/tree/year delivered in small amounts every irrigation via an automated buried drip system. Symptoms of BC began appearing primarily in the 0- and 0.064-N treatments in 1993. During 1995 and 1996, we demonstrated highly significant relationships between low N status measured in leaves and increased incidence of BC. Furthermore, we determined levels of N application via drip irrigation, which resulted in good yields, vigorous growth, and lack of BC in our test plots, but also minimized N use and potential for nitrate leaching into groundwater. These and additional results will be presented.

Full access

W.C. Dunwell, D. Fare, M.A. Arnold, K. Tilt, G. Knox, W. Witte, P. Knight, M. Pooler, W. Klingeman, A. Niemiera, J. Ruter, T. Yeager, T. Ranney, R. Beeson, J. Lindstrom, E. Bush, A. Owings and M. Schnelle

The Southern Extension and Research Activities/Information Exchange Group-27 (SERA/IEG-27) is sponsored by the Southern Association of Agricultural Experiment Station Directors. Thirteen universities and the U.S. National Arboretum cooperate with official representatives from extension and research programs. The objective of the group is to identify, evaluate, select, and disseminate information on superior, environmentally sustainable, landscape plants for nursery crop production and landscape systems in the southeastern U.S. Plants are distributed to members responding to a request from cooperators for plant evaluation. Those who agree to cooperate are expected to grow the selected liner to landscape size, then transplant it in a landscape setting. The plant is rated for insect, disease, and cold damage, heat stress, growth rate, ornamental flowering and fruiting, fall color, commercial production potential, landscape potential, invasiveness potential, and insect disease transmission potential. Growth rate is evaluated annually by recording plant height and width. Initial bloom date is reported followed by bloom duration in days. Following evaluation, the group collectively and individually disseminates information gained from the plant evaluation system to a wide variety of audiences.