Search Results

You are looking at 1 - 10 of 30 items for

  • Author or Editor: J.R. Schultheis x
Clear All Modify Search

To reduce transplant shock of bell peppers (Capsicum annuum L.), we tested the effectiveness of pretransplant nutritional conditioning (PNC) as a promoter of earliness and yield. In Expt. 1, `Gatorbelle' bell pepper seedlings were fertilized with N from Ca(NO3)2 at 25, 75, or 225 mg·liter-1 and P from Ca(H2PO4)2 at 5, 15, or 45 mg·liter-1. Nitrogen interacted with P, affecting shoot fresh and dry weight, leaf area, root dry weight, seedling height, and leaf count. In Expt. 2, transplants conditioned with N from 50, 100, and 200 mg·liter-1 and P at 15, 30, and 60 mg·liter-1 were field-planted in Charleston, S.C., and Clinton, N.C. Nitrogen- and P-PNC did not greatly affect recovery from transplant shock. Although N- and P-PNC affected seedling growth in the greenhouse, earliness, total yield, and quality were similar in field studies among all PNC treatments at both locations. PNC with 50 mg N and 15 mg P/liter can be used with this variety and not have any long-term detrimental effects on yield and quality.

Free access

Pretransplant nutritional conditioning (PNC) of transplants during greenhouse production may improve recovery from transplanting stress and enhance earliness and yield of watermelon [Citrullus lanatus (Thumb.) Matsum. & Nakai]. Two greenhouse experiments (Expts. 1 and 2) and field experiments in South Carolina and North Carolina (Expt. 3) were conducted to evaluate N and P PNC effects on watermelon seedling growth and their effects on fruit yield and quality. `Queen of Hearts' triploid and `Crimson Sweet' diploid watermelon seedlings were fertilized with N from calcium nitrate at 25, 75, or 225 mg·liter–1 and P from calcium phosphate at 5, 15, or 45 mg·liter–1. In the greenhouse, most variation in the shoot fresh and dry weights, leaf count, leaf area, transplant height, and root dry weight in `Queen of Hearts' and `Crimson Sweet' was attributed to N. Cultivar interacted with N, affecting all seedling growth variables, but not leaf area in Expt. 2. To a lesser extent, in Expt. 1, but not in Expt. 2, P interacted with cultivar, N, or cultivar × N and affected shoot fresh and dry weights, leaf count and leaf area. In the field, transplant shock increased linearly with N, regardless of cultivar or field location. The effect of PNC on plant growth diminished as the growing season progressed. For both cultivars at both locations, N and P PNC did not affect time to first staminate flower, fruit set, fruit width or length, soluble solids concentration, or yield. Vining at Charleston for both cultivars was 2 days earlier when N was at 75 rather than 25 mg·liter–1, without further change with the high N rate. At Clinton, the first pistillate flower was delayed linearly the higher the N rate for `Crimson Sweet'. At Charleston, hollow heart in the `Queen of Hearts' increased nearly 3 times when N PNC rate was tripled (from 75 or 225 mg·liter–1), while N had no effect on hollow heart in `Crimson Sweet'. In contrast, at Clinton, hollow heart in either cultivar was affected by P PNC, not N. PNC with 25N–5P (in mg·liter–1) can be used to reduce seedling growth and produce a more compact plant for easier handling, yet not reduce fruit quality or yield.

Free access

The number of honey bees (Apis mellifera L.) continues to decline due to parasitic mite pests and other factors. Honey bees and bumble bees (Bombus impatiens Cresson) were therefore compared for their effects on the seed set of watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai] in a 2-year field experiment. The experiment was a 2 x 4 + 2 factorial, comparing bee type (honey bee or bumble bee) at four visitation levels (1, 6, 12, and 18 bee visits) to pistillate flowers, with two controls: a no-visit treatment and an open-pollinated treatment. Bee visitation level had a strong positive influence on seed set (P ≤ 0.0001). All flowers bagged to prevent insect visitation aborted, demonstrating the need for active pollen transfer between staminate and pistillate watermelon flowers. Flowers visited by B. impatiens consistently contained more seed than those visited by A. mellifera, when compared at equal bee visitation levels (P ≤ 0.0001). We conclude that bumble bees have great potential to serve as a supplemental pollinator for watermelon when honey bees available for rental are in limited supply.

Free access

The effectiveness of bumble bees, Bombus impatiens Cresson, and honey bees, Apis mellifera L., on the pollination of cucumber, Cucumis sativus L., and watermelon, Citrullus lanatus (Thunb.) Matsum. & Nakai, was compared under field conditions. Comparisons were based on fruit abortion rates and seed set as influenced by bee type (honey bee or bumble bee) and the number of bee visits to treatment flowers (1, 6, 12, and 18 bee visits), plus two controls: a no-visit treatment and an open-pollinated (unrestricted visitation) treatment. For both crops, an increased number of bee visits had a strong positive effect on fruit and seed set. All cucumber and watermelon flowers bagged to prevent insect visitation aborted, demonstrating the need for active transfer of pollen between staminate and pistillate flowers. Bumble bee-visited flowers consistently had lower abortion rates and higher seed sets in the cucumber and watermelon studies than did honey bee-visited flowers when compared at the same bee visitation level. Only slight differences in fruit abortion rates were detected between bee types in the watermelon study. However, abortion rates for bumble bee-visited flowers were consistently less than those for honey bee-visited flowers when compared at equal bee visitation levels, with one exception at the 12 bee visit level. As the number of honey bee colonies continues to decline due to parasitic mite pests and based on the data obtained, we conclude that bumble bees have a great potential to serve as a supplemental pollinator for cucumbers, watermelons, and possibly other vine crops, when honey bees available for rental are in limited supply.

Full access

Very little is known about the rate at which pollen grains are mobilized within insect-pollinated crop systems, and this is especially true the for commercial production of field-grown cucumber (Cucumis sativus L.), monoecious muskmelon (Cucumis melo L.), and triploid watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai]. The rates of pollen depletion for these crops were therefore investigated on plots simulating commercial crop production using a mixed honey bee (Apis mellifera L.) and bumble bee (Bombus impatiens Cresson) pollinator complex. At anthesis, staminate cucumber, muskmelon, and watermelon flowers contained on average 10539, 11176, and 30739 pollen grains/flower, respectively. At the time flowers closed in the early afternoon (1300 to 1400 hr), only 61% of the total pollen produced had been removed from staminate cucumber flowers, 44% to 62% from muskmelon, and 81% from watermelon flowers. The results suggest that total pollen production in these crops may not necessarily reflect total pollen availability to floral visitors (bees). However, of the total amount of pollen actually removed per flower, >57% occurred during the 2 h following flower anthesis of cucumber and muskmelon, and >77% occurred during the 2 h following flower anthesis of watermelon. Thus, most of the accessible pollen was removed shortly after anthesis, which is when these crops are most receptive to pollination. Nonviable triploid and viable diploid watermelon pollen were removed at similar rates (P = 0.4604). While correlation analyses were not possible for the influence of variable bee abundance on pollen depletion rates, higher bee populations in one year appeared to increase the rate at which pollen grains were removed from staminate flowers.

Free access

Plant formation from somatic embryos in response to BAP, NAA, and sucrose was studied in sweetpotato [Ipomoea batatas (L.) Lam.]. A maximum of 15% embryos at the torpedo stage of development formed plants of agar-solidified basal medium containing 3% sucrose and no growth regulators. The percentage of embryos forming shoots was increased to 53% by 4 μm BAP, but BAP reduced whole plant formation and promoted callusing at the root axis end of embryos. The frequency of plant development was increased to 38% by adding 0.1 μm NAA to the basal medium. Reducing sucrose concentration to 1.6% in basal medium increased the frequency of plant development to 32%. Chemical names used: 6-benzylaminopurine (BAP; α-naphthaleneacetic acid (NAA).

Free access

The need for alternative [non-honey bee (Apis mellifera L.)] pollinators continues to increase as the number of problems facing the American beekeeping industry increase. One readily available alternative pollinator source is commercially produced bumblebee (Bombus spp.) colonies. From 1997 to 1999, three studies were conducted to compare the pollination efficacy of bumblebee and honeybee pollinators on field-grown watermelon. The experiments documented 1) bee activity periods (the onset and termination of foraging behavior in association with watermelon anthesis and duration), 2) floral visitation rates (number of flowers visited per unit time by individual foragers), and 3) stigmatic pollen deposition (number of pollen grains deposited on stigmata during single bee visits to pistillate watermelon flowers over the course of anthesis). Bumblebees outperformed honeybees in all three comparative experiments. Bombus foragers initiated foraging activity 30 to 60 min before the appearance of the first honey bee foragers. Both bee types continued to forage throughout anthesis once appearing in the field. Individual bumblebees consistently visited two or more times the number of flowers per min than did honeybees (P < 0.0001) throughout the day excluding the initial 30 to 60 min when honeybees did not forage. The number of pollen grains deposited in an initial visit to stigmata by Bombus foragers was consistently greater than for honeybees (P < 0.001). For both bee types, pollen deposition was influenced by time of day, peaking at 0900 hr and then declining until 1200 HR, when the flowers closed. Both foraging rates and pollen deposition favored bumblebees over honeybees regardless of time of day.

Free access

Pollen from triploid (seedless) watermelon ( Citrullus lanatas) is nonviable. Diploid (seeded) watermelons are required in seedless watermelon production for pollination and fruit set. In 2004, markets continued to increase for triploid watermelon but decrease for diploid watermelons. Seed companies are commercializing diploid cultivars (pollenizers) specifically designed as a pollen source for triploid watermelon production. The objectives of this research were to characterize the vegetative, floral, and fruit growth and development of these pollenizers. Five cultivars were evaluated: `Companion', `Mickylee', `Mini Pool', `SP-1', and `Jenny'. When measuring the longest vine, `Companion' produced the smallest plants reaching a maximum vine length of 183 cm, 31 days after transplant (DAT). `Mickylee', `Mini Pool', `SP-1', and `Jenny' had similar vine lengths reaching maximum lengths ranging 294–335 cm, 31 DAT. The compact growth of `Companion' is consistent with the shorter node length of 3.8 cm, while the other pollenizers had a node length of 9.9–10.9 cm. `SP-1' produced more male flowers than the other pollenizers beginning 24 DAT and produced 30–40 male flowers per plant per day, 31–55 days after transplant. `Mickylee', `Mini Pool', and `Jenny' produced 9–15 male flowers per plant per day, 24–55 days after transplant. Early production of male flowers by `Companion' was similar to `Mickylee', `Mini Pool' and `Jenny'; however, flower production became the lowest compared with all pollenizer cultivars 24 DAT. `SP-1' produced more female flowers resulting in the most fruit production (4 fruit per plant). In contrast, `Companion' produced the fewest female flowers and produced 2 fruit per vine. `Mickylee' had the largest fruit weighing 5.9 kg, and `SP-1' and `Jenny' produced the smallest fruit weighing 3.1 kg. The use of specific pollenizers may provide the opportunity to customize production for specific cultivars for either early and or late harvests.

Free access

Triploid (seedless) watermelon [Citrullus lanatus (Thunb.) Matsum. and Nak.] pollen is nonviable; thus, diploid (pollenizer) watermelon cultigens are required to supply viable pollen for triploid watermelon fruit set. The objective of this research was to characterize maximum potential vegetative growth, staminate and pistillate flower production over time, and measure exterior and interior fruit characteristics of pollenizer cultigens. Sixteen commercially available and numbered line (hereafter collectively referred to as cultigens) pollenizer and two triploid cultigens were evaluated in 2005 and 2006 at Clayton, NC. Vegetative growth was measured using vine and internode length, and staminate and pistillate flower development was counted weekly. Fruit quality and quantity were determined by measuring individual fruit weights, soluble solids, and rind thickness. Based on vegetative growth, pollenizer cultigens were placed into two distinct groups. Pollenizers, which produced a compact or dwarf plant were ‘Companion’, ‘Sidekick’, ‘TP91’, ‘TPS92’, and ‘WC5108-1216’. Pollenizers having a standard vine length were ‘Jenny’, ‘High Set 11’, ‘Mickylee’, ‘Minipol’, ‘Pinnacle’, ‘Summer Flavor 800’ (‘SF800’), ‘Super Pollenizer 1’ (‘SP1’), and ‘WH6818’. Cultigens with compact growth habit had shorter internodes and vine lengths compared with the cultigens with standard growth habit. Cultigens with the greatest quantity of staminate flower production through the entire season were ‘Sidekick’ and ‘SP1’. The lowest number of staminate flowers was produced by ‘TP91’ and ‘TPS92’. Based on fruit quality characteristics and production, pollenizers currently or possibly marketed for consumption include ‘Mickylee’, ‘SF800’, ‘Minipol’, ‘Jenny’, and ‘Pinnacle’. The remaining cultigens evaluated in this study should be used strictly as pollenizers based on fruit quality. Arrangement of diploid pollenizers in a commercial planting of triploid watermelons is an important consideration depending on plant vegetative development. Based on staminate flower production, cultigens with higher staminate flower production are potentially superior pollenizers and may lead to improved triploid quality and production. Furthermore, pollenizer selection by fruit characteristics should include a rind pattern easily distinguished from triploid fruit in the field.

Free access

An experiment was conducted during 2005 and 2006 in Kinston, NC, with the objective of maximizing triploid watermelon [Citrullus lanatus (Thunb.) Matsum. and Nak.] fruit yield and quality by optimizing the choice and use of pollenizers. Treatments were pollenizer cultivars planted singly [‘Companion’, ‘Super Pollenizer 1’ (‘SP1’), ‘Summer Flavor 800’ (‘SF800’), and ‘Mickylee’] or in pairs (‘Companion’ + ‘SP1’, ‘Companion’ + ‘SF800’, and ‘SP1’ + ‘SF800’). All pollenizers from these seven treatments were interplanted with the triploid cultivar Tri-X-313. Planting arrangement was compared by establishing ‘SF800’ in a hill versus an interplanted field arrangement. Effect of pollenizer establishment timing on triploid fruit yields and quality was evaluated by establishing ‘SP1’ 3 weeks after planting and comparing it with the establishment of ‘SP1’ at the time of triploid plant establishment. Finally, a triploid planting with no pollenizer (control) was included to determine pollen movement. Fruit yield from the control was 22% or less of yield of the other treatments containing a pollenizer and less than 10% in the initial or early harvests. Pollen movement was minimal among plots and differences in yield and fruit quality could be attributed to pollenizer treatment. In 2005, the use of ‘Companion’, ‘SP1’, or ‘Mickylee’ as pollenizers produced similar total yields, whereas ‘SF800’ produced the lowest yield. In 2005, ‘Companion’ produced more large fruit than the other individual pollenizer treatments. Combining the pollenizers generally did not enhance triploid yields or quality. Interplanting of pollenizers consistently resulted in greater yield compared with the hill system. Late planting of ‘SP1’ increased the incidence of hollow heart in the marketable fruit and decreased yield compared with simultaneously planting ‘SP1’ and triploid plants. Thus, selection of pollenizer, planting arrangement, and time of pollenizer establishment are all important considerations to optimizing triploid yield and quality.

Free access