Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: J.P. Mueller x
Clear All Modify Search
Authors: and

The Center for Environmental Farming Systems (CEFS) is dedicated to developing farming systems that are environmentally, economically, and socially sustainable. Established in 1994 at the North Carolina Dept. of Agriculture Cherry Farm near Goldsboro, CEFS has >2000 acres (1000 cleared). This unique center is a partnership among North Carolina State Univ., North Carolina Agriculture and Technical State Univ., North Carolina Dep. of Agriculture and Consumer Services, nongovernmental organizations, and other state and federal agencies, farmers, and citizens. Long-term cropping systems that integrate the broad range of factors involved in agricultural systems is the focus of the Cropping Systems Unit at CEFS. The USDA SARE program has provided funding to help establish a comprehensive long-term, large-scale experiment. Data collection and analyses include comprehensive soil and water quality, pests and predators (weeds, insects, and disease), crop factors (growth, yield, and quality), economic factors (viability, on/off farm impact, and community), and energy issues. Systems being compared are a successional ecosystem, plantation forestry/wood lot, integrated crop/animal production system, organic production system, and a cash-grain cropping system (BMP). An interdisciplinary team of scientists from almost every department from the College of Agriculture and Life Sciences, along with faculty from North Carolina Agriculture and Technical State Univ., NGO representatives, and farmers are collaborating in this endeavor. Challenges and opportunities in building collaborative teams and setting up such long-term trials will be discussed.

Free access

A root-knot nematode (Meloldogyne incognita) project was initiated in a field of infested sandy loam (EREC) in 1991 and continued. There were ten sweetpotato entries consisting of six cultivars (Beauregard. Excel, Georgia Jet, Jewel, Red Jewel, and Sumor), three advanced lines (W-270, W-274, and W-279) and PI 399161 which were selected for their diversity in disease reactions and other traits. Each entry was planted in the same plots each year to monitor effects of continuous cropping, disease reactions, yield and population shifts of the pathogen. Marketable yields were reduced each year for Georgia Jet and Red Jewel, but not for Beauregard. Internal necrosis in the storage roots was most severe for Beauregard. Several of the highly resistant entries, especially Sumor and W-279, performed well each year, including high yields, good quality. and little or no nematode reproduction. This study demonstrates the considerable economic benefits of a high level of durable resistance to root knot in sweetpotato.

Free access
Authors: , , and

1-Methylcyclopropene (1-MCP), a gaseous synthetic cyclic hydrocarbon, has been shown to have potential to become an important new tool in controlling the response of plants sensitive to ethylene. Due to its irreversible binding to the ethylene receptor(s) and its subsequent prevention of the physiological action of ethylene for extended periods, 1-MCP may prove also to have effective commercial application in the control of ethylene effects in detached organs such as fruit. Our objective was to investigate the effectiveness of 1-MCP in controlling ripening in pear. Two commercial cultivars (Bosc, Anjou) and one numbered cultivar from Agriculture and Agri-Food Canada's breeding program (Harrow 607) were harvested at commercial maturity. Immediately after harvest, fruit were exposed for 24 h at 20 °C to 1-MCP ranging from 0 to 100 μL•L-1 then placed in air at 0 °C and 90% relative humidity for 5 and 10 weeks. Following treatment and after 5 weeks storage plus a 7- or 14-day post-storage ripening period, fruit softening and ethylene evolution were inhibited and fruit volatile evolution was reduced significantly by exposure to 1-MCP at or above 1.0 μL•L-1 in all three cultivars. Concentrations exceeding 1.0 μL•L-1 were required to maintain initial firmness and inhibit ethylene production after 10 weeks storage in air. Evolution of alpha-farnesene and 6-methyl-5-hepten-2-one was related to low temperature stress and chlorophyll loss as a result of ripening, respectively, and were affected by 1-MCP exposure. The pattern of evolution and amounts of other volatiles was also affected by 1-MCP treatment. These results indicate a huge potential for commercial use and application of 1-MCP in controlling fruit ripening and senescence.

Free access

There is an increasing demand for education in organic and sustainable agriculture from undergraduates, graduate students and extension agents. In this paper, we discuss highlights and evaluations of a multilevel approach to education currently being developed at North Carolina State University (NCSU) that integrates interdisciplinary training in organic and sustainable agriculture and the related discipline of agroecology through a variety of programs for undergraduate students, graduate students, and extension agents. These educational programs are possible because of a committed interdisciplinary faculty team and the Center for Environmental Farming Systems, a facility dedicated to sustainable and organic agriculture research, education, and outreach. Undergraduate programs include an inquiry-based sustainable agriculture summer internship program, a sustainable agriculture apprenticeship program, and an interdisciplinary agroecology minor that includes two newly developed courses in agroecology and a web-based agroecology course. Research projects and a diversity of courses focusing on aspects of sustainable and organic agriculture are available at NCSU for graduate students and a PhD sustainable agriculture minor is under development. A series of workshops on organic systems training offered as a graduate-level course at NCSU for extension agents is also described. Connecting experiential training to a strong interdisciplinary academic curriculum in organic and sustainable agriculture was a primary objective and a common element across all programs. We believe the NCSU educational approach and programs described here may offer insights for other land grant universities considering developing multilevel sustainable agriculture educational programs.

Full access

The Center for Environmental Farming Systems (CEFS) is dedicated to farming systems that are environmentally, economically, and socially sustainable. Established in 1994 at the North Carolina Department of Agriculture and Consumer Services (NCDACS) Cherry Farm near Goldsboro, N.C.; CEFS operations extend over a land area of about 800 ha (2000 acres) [400 ha (1000 acres) cleared]. This unique center is a partnership among North Carolina State University (NCSU), North Carolina Agriculture and Technical State University (NCATSU), NCDACS, nongovernmental organizations (NGOs), other state and federal agencies, farmers and citizens. Long-term approaches that integrate the broad range of factors involved in agricultural systems are the focus of the Farming Systems Research Unit. The goal is to provide the empirical framework to address landscape-scale issues that impact long-run sustainability of North Carolina's agriculture. To this end, data collection and analyses include soil parameters (biological, chemical, physical), pests and predators (weeds, insects and disease), crop factors (growth, yield, and quality), economic factors, and energy issues. Five systems are being compared: a successional ecosystem, a plantation forestry-woodlot, an integrated crop-animal production system, an organic production system, and a cash-grain [best management practice (BMP)] cropping system. An interdisciplinary team of scientistsfrom the College of Agriculture and Life Sciences at NCSU and NCATSU, along with individuals from the NCDACS, NGO representatives, and farmers are collaborating in this endeavor. Experimental design and protocol are discussed, in addition to challenges and opportunities in designing and implementing long-term farming systems trials.

Full access