Search Results
Tomatoes (Lycopersicon esculentum Mill.) were grown on polyethylene-mulched beds of an Arrendondo fine sand during two seasons to evaluate the effects of trickle irrigation-applied N and/or K, percentages of trickle-applied nutrient(s) (50%, 75%, and 100%), and schedules of nutrient application (variable, 2% to 12.5% of total amount weekly, or constant, 8.3% of the total amount weekly) on the occurrence of fruit external and internal blotchy ripening and fruit mineral nutrient concentration. Trickle-applied fertilizer was injected into the irrigation water weekly during the first 12 weeks of each season. External and internal blotchy ripening were less severe with trickle-applied N supplied as N + K or N than with preplant-applied N. Trickle-applied N + K or N resulted in higher fruit concentrations of N, P, K, Ca, and Mg than with all preplant-applied N. Internal fruit quality improved slightly as the trickle-applied percentage of N and/or K increased from 50% to 100%, but significant differences in exterior quality were not obtained. Internal fruit quality was higher early in the season than late in the season during both years, but this response was not associated with fruit elemental concentration. The weekly schedule of nutrient injection had no significant effect on fruit quality or fruit elemental concentration. Highest yields of high-quality fruit were obtained with 50% trickle-applied N + K.
Tomatoes (Lycopersicon esculentum Mill.) were grown on polyethylene-mulched beds of an Arredondo fine sand during two seasons to evaluate the effects of trickle-applied N and/or K, percentages of trickle-applied N and K (50%, 75%, and 100%), and schedules of N and K application on fruit yield, and leaf and shoot N and K concentrations. The daily irrigation requirement, calculated at 47% of the water evaporated from a U.S. Weather Service Class A pan (Epan), was met by the application of 4.6 mm to 7.2 mm water/day. Fertilizer was injected weekly in a variable (2% to 12.5% of the total amount weekly) or constant (8.3% of the total amount weekly) schedule during the first 12 weeks of each season. Trickle-applied nutrients and trickle-applied percentage of nutrients interacted in their effects on early, midseason, and total marketable fruit yields. When N + K and N were trickle-applied, the mean early total marketable fruit yield decreased linearly from 25.3 t·ha-1 to 16.3 t·ha-1 as the trickle-applied percentage of nutrients increased from 50% to 100%; but when K was trickle-applied (100% preplant-applied N), yields were not affected by the trickle-applied percentage (mean 26.3 t·ha-1). The weekly schedule of N and K injection had no effect on fruit yield or other characteristics. Higher leaf N and K concentrations early in the season were obtained when the respective nutrient was 50% to 100% preplant-applied than when the respective nutrient was 75% to 100% trickle-applied; but late in the season, higher concentrations were obtained when the respective nutrient was trickle-applied. Higher yields, however, were associated with higher early season leaf N concentrations rather than with higher late-season leaf N or K concentrations.
Silver reflective plastic mulches were compared with conventional bare ground culture for the reduction of aphids, and mosaic virus diseases as follows: Cucumber Mosaic, Watermelon Mosaic I and II, Zucchini Yellows Mosaic, and Squash Mosaic. Silver plastic mulch produced higher marketable yields than the bare ground treatments. Other colors (white, yellow, and black plastic with yellow edges) of plastic mulch treatments were intermediate in their effects on aphid population and virus disease reduction. Silver reflective mulch alone and silver reflective mulch with insecticide were superior to other colors of plastic mulch in reducing aphid populations. Silver reflective plastic mulch, with or without insecticide, resulted in 10-13 days delay in the onset of the above mentioned mosaic disease.