Search Results
A root-knot nematode (Meloldogyne incognita) project was initiated in a field of infested sandy loam (EREC) in 1991 and continued. There were ten sweetpotato entries consisting of six cultivars (Beauregard. Excel, Georgia Jet, Jewel, Red Jewel, and Sumor), three advanced lines (W-270, W-274, and W-279) and PI 399161 which were selected for their diversity in disease reactions and other traits. Each entry was planted in the same plots each year to monitor effects of continuous cropping, disease reactions, yield and population shifts of the pathogen. Marketable yields were reduced each year for Georgia Jet and Red Jewel, but not for Beauregard. Internal necrosis in the storage roots was most severe for Beauregard. Several of the highly resistant entries, especially Sumor and W-279, performed well each year, including high yields, good quality. and little or no nematode reproduction. This study demonstrates the considerable economic benefits of a high level of durable resistance to root knot in sweetpotato.
A 3-year field study was conducted at Blackville, S.C., to evaluate the potential of using resistant pepper (Capsicum annuum L.) cultivars as a rotation crop for managing the southern root-knot nematode [Meloidogyne incognita (Kofoid and White) Chitwood]. The experiment was a split-plot with main plots arranged in a randomized complete-block design. In 1993, the entire experimental site was infested with M. incognita by inoculating a planting of susceptible PA-136 cayenne pepper with eggs of M. incognita race 3. In 1994, the main plots were planted to either highly resistant `Carolina Cayenne' or its susceptible sibling line PA-136. In 1995, `Carolina Cayenne' and the susceptible bell cultivars California Wonder and Keystone Resistant Giant were grown as subplots in each of the original main plots. `Carolina Cayenne' plants were unaffected by the previous crop. Previous cropping history, however, had a significant impact on the performance of the bell cultivars; the mean galling response was less (P < 0.01) and the yield was 2.8 times greater (P < 0.01) in the main plots previously cropped with `Carolina Cayenne' than in those previously cropped with PA-136. These results suggest that resistant pepper cultivars have considerable merit as a rotation crop for managing M. incognita infestations in soils used for growing high-value vegetables.
The southern root-knot nematode [Meloidogyne incognita (Kofoid & White) Chitwood] is a serious pest of pepper (Capsicum annuum L.). Currently, methyl bromide is used for nematode control, but the pending withdrawal of this fumigant from the United States market has resulted in a need for effective alternative root-knot nematode management measures. We evaluated the effectiveness of resistance of `Carolina Cayenne' relative to the susceptible genotypes `Early Calwonder' and PA-136 in greenhouse, microplot, and field studies. In all tests, `Carolina Cayenne' exhibited exceptionally high resistance (minimal galling, minimal nematode reproduction, and no yield reduction) to M. incognita; `Early Calwonder' and PA-136 were highly susceptible. In a test conducted in a heavily infested field, `Carolina Cayenne' outyielded PA-136 by 339%. The exceptionally high resistance exhibited by `Carolina Cayenne' provides an alternative to methyl bromide and other fumigant nematicides for managing root-knot nematodes in pepper.
1-Methylcyclopropene (1-MCP), a gaseous synthetic cyclic hydrocarbon, has been shown to have potential to become an important new tool in controlling the response of plants sensitive to ethylene. Due to its irreversible binding to the ethylene receptor(s) and its subsequent prevention of the physiological action of ethylene for extended periods, 1-MCP may prove also to have effective commercial application in the control of ethylene effects in detached organs such as fruit. Our objective was to investigate the effectiveness of 1-MCP in controlling ripening in pear. Two commercial cultivars (Bosc, Anjou) and one numbered cultivar from Agriculture and Agri-Food Canada's breeding program (Harrow 607) were harvested at commercial maturity. Immediately after harvest, fruit were exposed for 24 h at 20 °C to 1-MCP ranging from 0 to 100 μL•L-1 then placed in air at 0 °C and 90% relative humidity for 5 and 10 weeks. Following treatment and after 5 weeks storage plus a 7- or 14-day post-storage ripening period, fruit softening and ethylene evolution were inhibited and fruit volatile evolution was reduced significantly by exposure to 1-MCP at or above 1.0 μL•L-1 in all three cultivars. Concentrations exceeding 1.0 μL•L-1 were required to maintain initial firmness and inhibit ethylene production after 10 weeks storage in air. Evolution of alpha-farnesene and 6-methyl-5-hepten-2-one was related to low temperature stress and chlorophyll loss as a result of ripening, respectively, and were affected by 1-MCP exposure. The pattern of evolution and amounts of other volatiles was also affected by 1-MCP treatment. These results indicate a huge potential for commercial use and application of 1-MCP in controlling fruit ripening and senescence.
A new disorder of fruit has been observed on tomato (Lycopersicon esculentum Mill.) in Florida. The disorder, termed irregular ripening, was associated with field populations of the sweetpotato whitefly, Bemisia tabaci (Gennadius) and is characterized by incomplete ripening of longitudinal sections of fruit. An increase in internal white tissue also was associated with whitefly populations. In field cage studies, fruit on tomato plants not infested with the sweetpotato whitefly exhibited slight or no irregular ripening, whereas fruit from infested plants did. Fruit from plants on which a whitefly infestation had been controlled before the appearance of external symptoms exhibited reduced symptoms compared to fruit from plants on which an infestation was uncontrolled.
The Center for Environmental Farming Systems (CEFS) is dedicated to farming systems that are environmentally, economically, and socially sustainable. Established in 1994 at the North Carolina Department of Agriculture and Consumer Services (NCDACS) Cherry Farm near Goldsboro, N.C.; CEFS operations extend over a land area of about 800 ha (2000 acres) [400 ha (1000 acres) cleared]. This unique center is a partnership among North Carolina State University (NCSU), North Carolina Agriculture and Technical State University (NCATSU), NCDACS, nongovernmental organizations (NGOs), other state and federal agencies, farmers and citizens. Long-term approaches that integrate the broad range of factors involved in agricultural systems are the focus of the Farming Systems Research Unit. The goal is to provide the empirical framework to address landscape-scale issues that impact long-run sustainability of North Carolina's agriculture. To this end, data collection and analyses include soil parameters (biological, chemical, physical), pests and predators (weeds, insects and disease), crop factors (growth, yield, and quality), economic factors, and energy issues. Five systems are being compared: a successional ecosystem, a plantation forestry-woodlot, an integrated crop-animal production system, an organic production system, and a cash-grain [best management practice (BMP)] cropping system. An interdisciplinary team of scientistsfrom the College of Agriculture and Life Sciences at NCSU and NCATSU, along with individuals from the NCDACS, NGO representatives, and farmers are collaborating in this endeavor. Experimental design and protocol are discussed, in addition to challenges and opportunities in designing and implementing long-term farming systems trials.