Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: J.C. Cervantes x
Clear All Modify Search
Free access

J.C. Cervantes, D.L. Davis and G.C. Yencho

This study was conducted to determine whether the type of pot used for the evaluation affected the resistance response of the sweetpotato plants, and to assess the resistance response to different root-knot nematode species. Five sweetpotato [Ipomoea batatas (L.) Lam] cultivars, `Beauregard', `Exce'l, `Jewel', `Hernandez', and `Porto Rico', were screened for M. incognita (race 3), Meloidogyne arenaria (race 2), and M. javanica, in both 10-cm-side, square pots and 4-cm-diameter, cone pots. Gall index, necrosis index, and number of nematode eggs per gram of root were used to estimate nematode-resistance reaction. Mean of all indices between the 2 pot types were not significantly different (α = 0.05). Gall and necrosis indices were not correlated in any of the cultivars. Resistance response depended on cultivars and nematode species for all variables analyzed. `Beauregard' was the most susceptible to Meloidogyne. `Hernandez' and `Excel' were found to be the most resistant cultivars to the Meloidogyne species.

Free access

J.C. Cervantes-Flores, G.C. Yencho and E.L. Davis

Five sweetpotato [Ipomoea batatas (L.) Lam.] cultivars (`Beauregard', `Excel', `Jewel', `Hernandez', and `Porto Rico') were evaluated for resistance to three root-knot nematode species: Meloidogyne arenaria (Neal) Chitwood (race 2), M. incognita (Kofoid & White) Chitwood (race 3), and M. javanica (Treub) Chitwood. Resistance screening efficiency was assessed in both 400-cm3 square pots and 150-cm3 Conetainers™. Nematode infection was assessed as the percentage of root system galled, percentage of root system necrosis, and the number of nematode eggs produced per gram of root tissue. Means of these dependent variables were not different (P ≤ 0.05) between container types, with Conetainers™ being more efficient to use. Root necrosis was not related to nematode infection, but was significant among cultivars (P = 0.0005). The resistance responses of the cultivars differed depending on the nematode species. All five cultivars were resistant to M. arenaria race 2. `Hernandez', `Excel', and `Jewel' were also resistant to M. incognita race 3 and M. javanica.

Free access

J.C. Cervantes-Flores, G.C. Yencho and E.L. Davis

Sweetpotato [Ipomoea batatas (L.) Lam.] genotypes were evaluated for resistance to North Carolina root-knot nematode populations: Meloidogyne arenaria (Neal) Chitwood races 1 and 2; M. incognita (Kofoid & White) Chitwood races 1, 2, 3, and 4; and M. javanica (Treub) Chitwood. Resistance screening was conducted using 150-cm3 Conetainers containing 3 sand: 1 soil mix. Nematode infection and reproduction were assessed as the number of egg masses produced by root-knot nematodes per root system. Host suitability for the root-knot nematode populations differed among the 27 sweetpotato genotypes studied. Five genotypes (`Beauregard', L86-33, PDM P6, `Porto Rico', and `Pelican Processor') were selected for further study based on their differential reaction to the different root-knot nematodes tested. Two African landraces (`Tanzania' and `Wagabolige') were also selected because they were resistant to all the nematode species tested. The host status was tested against the four original M. incognita races, and an additional eight populations belonging to four host races, but collected from different geographical regions. The virulence of root-knot nematode populations of the same host race varied among and within sweetpotato genotypes. `Beauregard', L86-33, and PDM P6 were hosts for all 12 M. incognita populations, but differences in the aggressiveness of the isolates were observed. `Porto Rico' and `Pelican Processor' had different reactions to the M. incognita populations, regardless of the host race. Several clones showed resistance to all M. incognita populations tested. These responses suggest that different genes could be involved in the resistance of sweetpotato to root-knot nematodes. The results also suggest that testing Meloidogyne populations against several different sweetpotato hosts may be useful in determining the pathotypes affecting sweetpotato.

Free access

D.P. Zhang, M. Ghislain, A. Golmirzaie and J.C. Cervantes

Detecting inter- and intra-varietal variation is essential for the management of a plant germplasm bank. The sensitivity and efficiency of randomly amplified polymorphic DNA (RAPD) for cultivar identification and somaclonal mutation in sweetpotato were evaluated. RAPD demonstrated a highly significant inter-varietal variation. Every one of the 23 tested cultivars can be identified with a RAPD profile generated by a single primer. Suspected duplicates that are morphologically indistinguishable can be unambiguously verified with a combination of three decamers. No intra-varietal variation was found using RAPD. Clones of `Jewel' and `Beauregard' collected from different sources all have the same RAPD profiles. Moreover, with 150 markers, the transgenic `Chogoku' sweetpotato cannot be differentiated from its untransformed counterparts, even though the transgenic plant shows significant morphological changes. These results demonstrate that RAPD is a sensitive and efficient tool for identifying cultivar duplicates, but it is not efficient for detecting intra-clonal variation or somaclonal mutation in sweetpotato.

Free access

R.J. Schnell, C.T. Olano, J.S. Brown, A.W. Meerow, C. Cervantes-Martinez, C. Nagai and J.C. Motamayor

Commercial production of cacao in Hawaii is increasing, and this trend is expected to continue over the next several years. The increased acreages are being planted with seedlings from introduced and uncharacterized cacao populations from at least three initial introductions of cacao into the islands. Productive seedlings have been selected from a planting at Waialua, Oahu. The parents of these selections were believed to be the population at the Hawaii Agriculture Research Center (HARC) at Kunia; however, potential parental populations also exist at Univ. of Hawaii research stations at Waimanalo and Malama Ki. Using microsatellite markers, we analyzed the potential parental populations to identify the parents and determine the genetic background for 99 productive and 50 unproductive seedlings from the Waialua site. Based on 19 polymorphic microsatellite loci the parental population was identified as trees from Waimanalo and not trees from Malama Ki or Kunia. The Kunia and Malama Ki populations were very similar with low allelic diversity (A = 1.92) and low unbiased gene diversity (Hnb) of 0.311 and 0.329, respectively, and were determined to be Trinitario in type. The Waimanalo, productive seedling, and unproductive seedling populations had much higher levels of genetic diversity with Hnb of 0.699, 0.686, and 0.686, respectively, and were determined to be upper Amazon Forastero hybridized with Trinitario in type. An additional 46 microsatellite markers were amplified and analyzed in the Waimanalo parents, productive, and unproductive seedlings for a total of 65 loci. Seventeen loci contained alleles that were significantly associated with productive seedlings as determined by Armitage's trend test. Of these, 13 loci (76.4%) co-located with previously reported quantitative trait loci for productivity traits. These markers may prove useful for marker assisted selection and demonstrate the potential of association genetic studies in perennial tree crops such as cacao.

Free access

R.O.M. Mwanga, A. Kriegner, J.C. Cervantes-Flores, D.P. Zhang, J.W. Moyer and G.C. Yencho

When sweetpotato chlorotic stunt crinivirus (SPCSV) and sweetpotato feathery mottle potyvirus (SPFMV) infect sweetpotato [Ipomoea batatas (L.) Lam.], they interact synergistically and cause sweetpotato virus disease (SPVD), a major constraint to food productivity in east Africa. The genetic basis of resistance to these diseases was investigated in 15 sweetpotato diallel families (1352 genotypes) in Uganda, and in two families of the same diallel at the International Potato Center (CIP), Lima, Peru. Graft inoculation with SPCSV and SPFMV resulted in severe SPVD symptoms in all the families in Uganda. The distribution of SPVD scores was skewed toward highly susceptible categories (SPVD scores 4 and 5), eliminating almost all the resistant genotypes (scores 1 and 2). Likewise, when two promising diallel families (`Tanzania' × `Bikilamaliya' and `Tanzania' × `Wagabolige') were graft inoculated with SPCSV and SPFMV at CIP, severe SPVD was observed in most of the progenies. Individual inoculation of these two families with SPCSV or SPFMV, and Mendelian segregation analysis for resistant vs. susceptible categories led us to hypothesize that resistance to SPCSV and SPFMV was conditioned by two separate recessive genes inherited in a hexasomic or tetradisomic manner. Subsequent molecular marker studies yielded two genetic markers associated with resistance to SPCSV and SPFMV. The AFLP and RAPD markers linked to SPCSV and SPFMV resistance explained 70% and 72% of the variation in resistance, respectively. We propose naming these genes as spcsv1 and spfmv1. Our results also suggest that, in the presence of both of these viruses, additional genes mediate oligogenic or multigenic horizontal (quantitative) effects in the progenies studied for resistance to SPVD.

Free access

Cuauhtemoc Cervantes-Martinez, J. Steven Brown, Raymond J. Schnell, Wilbert Phillips-Mora, Jemmy F. Takrama and Juan C. Motamayor

Knowledge of genetic differences among commonly cultivated cacao clones, as well as the type of gene action involved for disease resistance, yield, quality, and horticultural traits, are essential for cacao breeders to select parental clones efficiently and effectively. This information is also critical for quantitative geneticists in designing and improving quantitative trait loci (QTL) localization strategies using breeding populations, whether they involve analysis of multiple populations crossed to one common parent or association genetic analysis. The objectives of this research were to 1) verify the genetic identity of parental cacao clones used to produce hybrids for field evaluation at the Centro Agrónomico Tropical de Investigación y Enzeñanza (CATIE), Turrialba, Costa Rica, using molecular marker analysis, and 2) estimate general and specific combining ability (GCA and SCA) of the parental clones for resistance to frosty pod (Moniliophthora roreri Cif. and Par.) and black pod [Phytophthora palmivora (Butl.) Butl.] diseases, total number of pods, vigor (as measured by trunk diameter), and measures of maturity (months to first flowering and pod production). Misidentification of cacao clones was found at three levels. Molecular marker analysis revealed that six parental clones differed in identity to supposedly identical accessions from other germplasm collections. Trees of the parental clone UF 273 consisted of two clearly different genotypes, resulting in two types of progeny, requiring separate designation for correct statistical analysis. Out-crossed progeny, presumably from foreign pollen, and selfed progeny were also found. Two of the traits measured, percent healthy pods and percent pods with frosty pod, showed predominantly additive gene action, while the traits total number of pods and trunk diameter, demonstrated regulation by both additive and nonadditive gene action. Number of months to first flowering and first fruit both showed evidence of predominant regulation by nonadditive gene effects. Crosses of two parental clones, UF 712 and UF 273 Type I, were identified as potential candidates for QTL analysis as breeding populations, given their favorable GCA estimates for frosty pod resistance and total pod production, respectively.