Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: J.A. de Juan x
Clear All Modify Search
Free access

F.J. Montero, J.A. de Juan, A. Cuesta and A. Brasa

The importance of rapid, nondestructive, and accurate measurements of leaf area (LA) in agronomic and physiological studies is well known, but a search of the literature revealed little information available for grape (Vitis vinifera L.). The results described herein include a comparison of 12 different mathematical models for estimating leaf area in `Cencibel'. The simplest, most accurate regression equations were: LAi = 0.587 LW (R 2 = 0.987) and LAi = 0.588 LW (R 2 = 0.994), where LAi is leaf area measured using image analysis and LW is leaf length × maximum width. Use of maximum width (W), leaf length (L), petiole length (Lp), and dry weight of leaves (DML) as single variables in the regression equations were not as closely associated with total leaf area, although their R 2 values were also highly significant.

Restricted access

Maria T. Ariza, Juan J. Medina, Luis Miranda, José A. Gómez-Mora, Berta De Los Santos, Antonieta de Cal, Elsa Martínez-Ferri, Lucía Cervantes, Rosalía Villalba and Carmen Soria

Free access

Eva García-Méndez, David García-Sinovas, Maximo Becerril, Antońeta De Cal, Paloma Melgarejo, Anselmo Martínez-Treceño, Steven A. Fennimore, Carmen Soria, Juan J. Medina and Jóse M. López-Aranda

The phase out of methyl bromide (MB) requires effective alternatives for soil disinfestation, particularly in high-elevation strawberry (Fragaria × ananassa Duch.) nurseries. Methyl bromide alternative fumigants were evaluated over a 3-year period for weed control and runner plant yields at strawberry nurseries in Spain. Two types of field trials were carried out: replicated experiments and commercial-scale field demonstrations. In the replicated experiments, eight fumigant treatments were evaluated each year, including the nonfumigated control and commercial standard methyl bromide plus chloropicrin mixture (MB : Pic) (50 : 50 w/w). Among the treatments evaluated were dazomet, chloropicrin (Pic) alone, metam sodium plus chloropicrin (MS + Pic), 1,3-dichloropropene:chloropicrin (1,3-D : Pic) (61 : 35 w/w), DMDS plus chloropicrin (DMDS + Pic), and propylene oxide. The best alternative fumigant treatments from the replicated experiments were carried forward to the demonstration phase of the project. Treatments such as 1,3-D : Pic (300 kg·ha−1), the combination of metam sodium plus chloropicrin (Pic) (400 to 500 + 150 to 250 kg·ha−1), Pic alone (300 kg·ha−1) as well as dazomet (400 kg·ha−1) controlled weeds at the level of MB : Pic (400 kg·ha−1). Runner plant yields, in soils previously fumigated with alternative fumigants varied, among years, locations, and trial scale, i.e., commercial scale, or small plot. By comparison, runner plant yields in MB : Pic-fumigated soils were consistently high among years, location, and trial scale. Chemical names used are: 1,3-D, 1,3-dichloropropene; MB, methyl bromide; Pic, trichloronitromethane; MS, sodium N-methyldithiocarbamate; DMDS, dimethyl disulphide; dazomet, tetrahydro-3,5-dimethyl-2H-1,3,5-thiadiazine-2-thione; PO, propylene oxide

Full access

José M. López-Aranda, Luis Miranda, Juan J. Medina, Carmen Soria, Berta de los Santos, Fernando Romero, Rosa M. Pérez-Jiménez, Miguel Talavera, Steve A. Fennimore and Bielinski M. Santos

Field trials were conducted in two locations in Spain to determine the effect of methyl bromide (MBr) alternatives on soilborne diseases and nematodes, and strawberry (Fragaria ×ananassa) yields under high-tunnel conditions. Fumigant treatments were applied to the same plots each year. Treatments were MBr + chloropicrin (Pic) (50:50, v/v) at a rate of 400 kg·ha−1; 1,3-dichloropropene (1,3-D) + Pic (65:35, v/v) at 300 kg·ha−1; Pic at 300 kg·ha−1; dimethyl disulfide (DMDS) + Pic (50:50, v/v) at 500 kg·ha−1; propylene oxide at 550 kg·ha−1; dazomet at 400 kg·ha−1; and calcium cyanamide (Ca-cyanamide) at 700 kg·ha−1. A nontreated control was also included. Fumigation with MBr + Pic, 1,3-D + Pic, Pic, and DMDS + Pic consistently improved early and total marketable strawberry yields in both locations. This response was caused by successful soilborne fungus and nematode control, improving strawberry growth and development, which resulted in increased plant canopy diameters and higher strawberry early and total yield.

Free access

Ksenija Gasic, John E. Preece and David Karp