Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: J.A. Spencer x
Clear All Modify Search

Leaflet surfaces of two blackspot (Diplocarpon rosae Wolf)-resistant roses (Rosa roxburghii Tratt and R. wichuraiana Crep.) and two susceptible roses (R. hybrida `Electron' and `Pascali') were compared using scanning electron microscopy to determine whether physical features of the leaflet surface were associated with resistance to the fungal invasion. The leaflet surface features of the resistant roses were dissimilar: R. roxburghii leaflet surface had protruding cells and was densely covered with amorphous wax platelets, whereas R. wichuraiana surface was smooth with less distinct epidermal cells and sparsely distributed wax granules. Leaflet surface patterns of both susceptible roses, however, were similar. The spores of D. rosae failed to germinate on R. roxburghii and R. wichuraiana. In contrast, the spores on `Electron' and `Pascal? germinated, with the germ tube penetrating the cuticle. There were no apparent morphological barriers on leaflet surfaces of R. roxburghii and R. wichuraiana to explain the observed resistance to fungal development.

Free access

The objective of this study was to determine if blackspot (Diplocarpon rosae, Wolf) resistance and susceptibility is expressed in callus derived from known resistant and susceptible genotypes of roses. Established callus lines of blackspot susceptible hybrid tea roses `Pascali' and `Tropicana' and blackspot resistant species roses Rosa roxburghii and R. setigera were inoculated directly with a blackspot conidia suspension. Uninoculated callus served as controls. Cultures were incubated at 25°C for 28 days in the dark. An evaluation of the appearance and precent change in fresh weight indicated that for all genotypes tested, inoculation resulted in a decline in tissue appearance and rate of weight increase. These results indicated that in vitro. resistance to blackspot differs from the resistance found in whole plants.

Free access

The objective of this study was to determine whether tissue culture can be used for studying the blackspot resistance found in some roses. Callus was initiated from leaves, petioles, and stems of resistant and susceptible genotypes. Good callus formation for susceptible roses (hybrid teas) was obtained on a medium containing MS basal salts, vitamins, sucrose, and 8 g/L agar supplemented with 2 mg/L 2,4-D, 1 mg/L NAA, and 0.2 mg/L BA. Callus formation for resistant roses (species roses) was best when the concentrate ions of growth regulators in the medium were halved. Browning in species rose cultures, was decreased with the addition of 0.05 g/L ascorbic acid to the medium followed by incubation in the dark. The subculture calli were inoculated with the fungal conidia and were analyzed for proteins by SDS-PAGE. These protein profiles were compared to those of whole leaf samples. The results are discussed in terms of similarities and differences in the biochemical responses of callus cultures versus whole leaves to the blackspot infection.

Free access

Most modern roses are highly susceptible to the disease blackspot caused by the fungus Diplocarpon rosae. This contrasts to species roses that are resistant to the disease. To gain information on the biochemical factors in this resistance mechanism, we are studying the involvement of proteins. Soluble proteins of modern roses and species roses were extracted and analyzed by SDS-PAGE. When healthy leaves were examined, there were no distinct differences in the protein patterns, indicating that there are no constitutive proteins involved in the disease resistance mechanism. There were no differences between healthy and infected leaves of resistant genotypes. When detached leaves of some susceptible types were infected with the fungus new proteins seemed to appear in the healthy region surrounding the blackspot lesion. These proteins may be involved in resisting the spread of the pathogen.

Free access

Blackspot disease, caused by Diplocarpon rosae, is a devastating disease of garden roses. Most hybrid teas and floribundas are susceptible to this disease in contrast to many species roses, which are resistant. The basis of this resistance is not known. The first barrier to invasion by the pathogen is the outer surface of the leaf. The physical nature of this surface may influence the attempted infection, landing, germination and penetration by the fungal spore and may cause a failure of infection. The leaf surfaces of susceptible and resistant genotypes were observed using SEM that allowed examination of the fine structure of the leaf surface. The characteristics of the leaf surface topography including wax structures were pictorially compared and visual concepts developed in relation to the dynamic nature of the leaf surface in space and time as leaf is infected by the pathogen.

Free access

There is a growing interest by consumers to purchase fresh tomatoes with improved quality traits including lycopene, total soluble solids (TSS), vitamin C, and total titratable acid (TTA) content. As a result, there are considerable efforts by tomato breeders to improve tomato for these traits. However, suitable varieties developed for one location may not perform the same in different locations. This causes a problem for plant breeders because it is too labor-intensive to develop varieties for each specific location. The objective of this study was to determine the extent of genotype × environment (G×E) interaction that influences tomato fruit quality. To achieve this objective, we grew a set of 42 diverse tomato genotypes with different fruit shapes in replicated trials in three locations: North Carolina, New York, and Ohio. Fruits were harvested at the red ripe stage and analyzed for lycopene, TSS, vitamin C, and TTA. Analysis of variance (ANOVA) revealed that there were significant differences (P < 0.05) among tomato genotypes, locations, and their interaction. Further analysis of quality traits from individual locations revealed that there was as much as 211% change in performance of some genotypes in a certain location compared with the average performance of a genotype. Lycopene was found to be most influenced by the environment, whereas TTA was the least influenced. This was in agreement with heritability estimates observed in the study for these quality traits, because heritability estimate for lycopene was 16%, whereas that for TTA was 87%. The extent of G×E interaction found for the fruit quality traits in the tomato varieties included in this study may be useful in identifying optimal locations for future field trials by tomato breeders aiming to improve tomato fruit quality.

Free access