Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: J.A. Menge x
  • Refine by Access: All x
Clear All Modify Search
Free access

U. Afek, L.A. Lippet, D. Adams, J.A. Menge, and E. Pond

Vesicular–arbuscular mycorrhizal inoculum consisting of a mixture of roots of coast redwood [Sequoia sempervirens (D. Don)], soil, and spores of Glomus mosseae (Nicol. and Gerd.) Gerdemann and Trappe was tested for viability and efficacy following storage for 4 or 8 weeks at 4, 9, 15, or 24C and moisture contents of 0%, 6%, 12%, or 17%. Storage regimes did not have any effect on the number of spores of Glomus mosseae recovered after storage. However, germinability of the spores decreased from 35% before storage to 10% to 31% during storage, especially under typical ambient room conditions (17% moisture at 24C). Maximum colonization of coast redwood, sierra redwood [Sequoiadendrom giganteum (Lindl.) Buchh.], and incense cedar (Libocedrous decurrens Torr.) was achieved after inoculation with 1 inoculum: 1 potting mix dilution (w/w). However, plant fresh weight was highest following inoculation with a 1 inoculum: 5 potting mix dilution (w/w). Dried inoculum was effective when stored at 24C, or below 10C when moist.

Free access

U. Afek, E. Rinaldelli, J.A. Menge, E.L.V. Johnson, and E. Pond

The length of time required for vesicular-arbuscular mycorrhiza (VAM) colonization, the effect of root age, and the position of VAM inoculum with respect to the root system were tested on cotton (Gossypium hirsutum L.), onion (Allium cepa L.), and pepper (Capsicum annuum L.). Colonization of onion by Glomus deserticola began 3 days after inoculation and reached 50% of the total root length after 21 days. Colonization by G. mosseae and G. intraradices began after 12 days and attained 15% and 37%, respectively, after 21 days. In cotton, colonization with G. deserticola and G. intraradices began 12 days following inoculation and increased to 20% and 18%, respectively, after 21 days. Colonization of cotton by G. mosseae was poor. In pepper, colonization with G. deserticola, G. mosseae, and G. intraradices began 3, 6, and 6 days after inoculation and, after 21 days, reached 60%, 13%, and 10%, respectively. In a second experiment, rapid colonization by G. deserticola took place in 3-day-old onion seedlings and increased to 51% 3 days after inoculation. Ten- and 17-day-old seedlings were far less responsive to VAM colonization but became highly infected at 30 days when new roots were produced. In a third experiment, inoculum placement 3 cm below seeds at planting in the field was the most effective for promoting colonization of cotton and onion by VAM. In fumigated field soil, mycorrhizae increased cotton growth an average of 28% when inoculum was applied below seeds compared to one- or two-sided band applications. Even in nonfumigated field soil, inoculum placed 3 cm below the seed and inoculum placed in a band at one side 2 weeks after planting significantly increased cotton growth. In onion, mycorrhizal inoculation improved growth in fumigated soil when it was placed below the seed, but did not stimulate growth in nonfumigated soil.

Free access

Etaferahu Takele, John A. Menge, John E. Pehrson Jr., Jewell L. Meyer, Charles W. Coggins Jr., Mary Lu Arpaia, J. Daniel Hare, Darwin R. Atkin, and Carol Adams

The effect of various integrated crop management practices on productivity (fruit yield, grade, and sire) and returns of `Washington Navel' oranges [Citrus sinensis (L.) Osbeck] was determined in the San Joaquin Valley of California. Seventy-two combinations of treatments comprised of three irrigation levels [80%, 100%, and 120% evapotranspiration demand (ETc)], three N fertilizer levels (low, medium, and high based on 2.3%, 2.5%, and 2.7% leaf N, respectively), gibberellic acid (±), miticide (±), and fungicide-nematicide (±) were included in the analysis. Using a partial budgeting procedure, returns after costs were calculated for each treatment combiition. Costs of treatments, harvesting, packing, and processing were subtracted from the value of the crop. The value of the crop was calculated as the sum of returns of crop in each size and grade category. The overall result indicated that returns after costs were higher for the +fungicide-nematicide treatment and also were generally more with increased irrigation. The combination of 120% ETc, +fungicide-nematicide, medium or high N, -miticide, and -gibberellin showed the highest return of all treatment combinations. Second highest returns were obtained with high N or with miticide and gibberellin used together.