Search Results

You are looking at 1 - 10 of 13 items for

  • Author or Editor: J. T. Yeager x
  • Refine by Access: All x
Clear All Modify Search
Open access

T. H. Yeager and J. E. Barrett

Abstract

Polyvinyl chloride columns (4 × 15 cm) containing by volume either 2 pine bark : 1 moss peat : 0 sand, 2 pine bark : 0 moss peat : 1 sand, 0 pine bark : 1 moss peat : 1 sand, or 2 pine bark : 1 moss peat : 1 sand amended with 3 kg m-3 of 32P-superphosphate (8.7% P) were leached daily with 16 or 32 ml of deionized water (pH 5.5) in 1 hour. Irrigation rate did not affect 32P leaching nor was there a media rate interaction or difference in the percentage total 32P and dissolved 32P leached. Medium 2:1:1 had the greatest percentage (76%) of 32P leached during the 3-week experimental period, however, 55% of the 32P amendment leached from each medium the 1st week.

Free access

Stephen M. Southwick, W. Krueger, J.T. Yeager, and J. Osgood

French prunes (Prunus domestica L.) on myrobalan seedling rootstock were planted in 1981 in an east-west direction with 4.9 m between rows and 2.7 m between trees on a poorly drained Class II soil in Glenn County, CA. A randomized complete block design was used with 8 trees per plot. Trees were pruned by hand to an open-center tree form or pruned by machine to a pyramid form in the dormant or summer season resulting in 6 pruning treatments. This high density system has led to high yields of good quality fruit (9.18 dry tons/acre in 1989, sized at 78 fruit per pound). Hand pruning led to higher yields, larger fruit, lower drying ratios and a greater dollar return per acre than any of the machine pruned trees. Dormant machine pruning led to larger fruit produced than those trees pruned in the summer by machine. Mechanical pruning may be possible for short time periods, but continued practice led to smaller fruit with lower yields than hand pruning. Certain locations within the tree canopy had smaller fruit size and it is within those lower locations where fruit size needs to be improved. These and additional experimental results obtained from 1987 through 1989 growing seasons will be presented.

Free access

S. M. Southwick, K. Shackel, and J. T. Yeager

`Bing' sweet cherry is the most widely planted cultivar grown in the Western US because of widespread market acceptance. High prices are associated with early maturing `Bings' so growers are inclined to plant in early maturing growing regions. High numbers of less marketable, abnormally shaped (deep sutures, spurs, doubles) fruit tend to be produced in these regions. It is thought that abnormal fruit development is associated with high summer temperatures. Dataloggers equipped with thermocouples were located in 7 California cherry growing regions. Thermocouples were positioned throughout tree canopies, monitoring flower bud temperatures for 2 seasons from May to October. A Richard's function was used to describe the relation of average daily temperature (July, August, September to the percentage of fruit with deep suture. Correlation coefficients (R2) of 0.85 and higher were found, with increases in average daily temperatures above 22C associated with the formation of abnormal fruit shapes. Heat lamps were used to increase spur temperatures 5-7C above ambient during the July through September period, High percentages of abnormal flowers were produced in the season after 2 July, but not after 21 August heating, Strategies to lower high summer canopy temperatures helped to reduce abnormal fruit shapes.

Free access

Frank T. Yoshikawa, G.C. Martin, D. Ramos, and J.T. Yeager

Various rates of Wilthin were applied at full bloom to limbs carrying 150 to 250 flowers to study their activity on blossom thinning of `Loadel' peaches. Wilthin applied at 0.75% and 1.0% significantly reduced fruit set to 29% and 30%, respectively, while the control produced 94%. The effectiveness of the 0.75% rate was dramatic, but it is interesting to note that the 1.0% rate did not lead to excessive thinning nor phytotoxicity on foliage or fruit. More extensive studies need to be done to fully determine the potential of this material. However, these results suggest that further testing of Wilthin on a larger scale is warranted.

Free access

S.M. Southwick, S.A. Weinbaum, T.T. Muraoka, W.R. Krueger, K.A. Shackel, and J.T. Yeager

Leaf dry weight per leaf area (LDW/LA); weight of leaf N per unit leaf area (LN/LA); leaf dry weight (LDW); and fruit quality, particularly sugar per fruit (SF); fruit fresh weight (FFW); and fruit dry weight (FDW) were measured over a range of daily average incident photosynthetic photon flux values (PPF) (50 to 1000 μmol·s-1·m-2) in 7-year-old prune (Prunus domestics L. syn. `Petite d'Agen') tree canopies. Linear or curvilinear relationships between these leaf attributes and fruit characteristics were significant over the PPF range. Analysis of LDW/LA or LN/LA may be used to indicate tree canopy locations in which fruit size and quality is limited by suboptimal PPF.

Open access

S. A. Weinbaum, S. M. Southwick, K. A. Shackel, T. T. Muraoka, W. Krueger, and J. T. Yeager

Abstract

The relationship between canopy position and foliage concentrations of several phloem-mobile and -immobile essential nutrients was determined over a 20-fold range of average incident photosynthetic photon flux (PPF) (50 to 1000 μmol·s−1·m−2) in 7-year-old prune (Prunus domestica L., syn. ‘Prune d’Agen’) tree canopies. Mineral weight per unit of leaf area (LA) increased with increasing PPF within the canopy according to the relationship N > Ca > Mg > K > P. Dry weight per leaf area (DW/LA) increased 3-fold over the range of light exposures sampled. Leaf nutrient concentration expressed as percent dry matter (DM) did not vary with PPF. Both DW/LA and leaf N/LA appear to integrate the light microenvironment at the canopy coordinates of leaves sampled and may be correlated with photosynthetic capacity. Thus, these parameters may have diagnostic value in orchard management and crop production.

Free access

K.G. Weis, S.M. Southwick, J.T. Yeager, W.W. Coates, and Michael E. Rupert

The years 1995 and 1996 were low chill years in California with respect to stone fruit dormancy. Advancing reproductive budbreak and flowering was accomplished in `Bing' cherry (Prunus avium) by single-spray treatments of a surfactant {a polymeric alkoxylated fatty amine [N,N-bis 2-(omega-hydroxypolyoxyethylene/polyoxypropylene) ethyl alkylamine]} and potassium nitrate in combination when applied at “tightbud,” ≈ 42 days (1 Feb. 1995) before full bloom and with surfactant and potassium nitrate in combination when 10% green calyx was apparent, 33 days before full bloom. Applying 2% surfactant (v/v) + 6% potassium nitrate (w/v) was most effective in advancing bloom, speeding progression through bloom, and advancing fruit maturity when applied at tightbud stage. Surfactant (2% or 4%) applied with 25% or 35% calcium nitrate (w/v) on 2 Feb. 1996 significantly advanced full bloom compared to nontreated controls. Fruit maturity (1995) was somewhat advanced by surfactant–nitrate treatments, but fruit set and final fruit weight were equivalent among treatments. No phytotoxicity was noted in foliage or fruit. In California, marginal and insufficient winter chilling often causes irregular, extended, or delayed bloom periods, resulting in poor bloom-overlap with pollenizers. As a result, flower and fruit development may be so variable as to have small, green and ripe fruit on the same tree, making harvest more time consuming and costly. Data indicate that this surfactant, in combination with a nitrogenous compound, has potential to advance reproductive budbreak and advance maturity in sweet cherry without reducing fruit set or fruit size. Advancing the ripening time of sweet cherry even 2 to 3 days can increase the price received per 8.2-kg box by $10 to $20.

Open access

Stephen M. Southwick, James T. Yeager, and J. Grant

Abstract

The effect of initial heading height on primary branch development in ‘Bing’ sweet cherry (Prunus avium) was examined in the first year of growth. Trees headed 51 cm above the soil surface resulted in fewer primary branches produced by 1-year-old trees than those headed at 75 cm and delay-headed at 142 cm, respectively. Branches on trees with lower heading height had narrow angles and longer branches than those on trees that were headed higher. Trees delay-headed at 142 cm produced the greatest number of primary branches with the widest crotch angles and shortest branch length. Branches were distributed along the entire length of the main leader in each treatment, but more branches with narrow angles and longer lengths were located 50 cm below the heading cut along the tree trunk. A significant linear relationship existed between branch angle and branch length in the 0- to 50-, 50- to 100-, and 100- to 142-cm sections along the tree trunk.

Open access

W.J. Foster, R.D. Wright, M.M. Alley, and T.H. Yeager

Abstract

Pine bark was shown to adsorb 1.5 mg of N/g of bark when NH4 solutions were leached through the bark. Increasing pH of bark increased adsorbed NH4. At pH 3.3, only NH4 was adsorbed to bark particles when a fertilizer solution containing NH4, Ca, K, and Mg was applied. However, adsorption of NH4 and other cations increased as pH was increased from 3.8 to 5.8. These data indicate that 2 types of sites exist for the adsorption of NH4 to pine bark. One site is effective at lower pH; the other is active as pH increases. Daily application of 2.5 cm of water containing 50 ppm NH4 required 20 days for equilibration to occur so as to satisfy all binding sites. Thus, incorporation of NH4 into a pine-bark medium prior to planting may be advisable to prevent low N levels from occurring in the container solution due to NH4 binding when plants are first planted and fertilized.

Free access

Suat Irmak, D.Z. Haman, A. Irmak, J.W. Jones, B. Tonkinson, D. Burch, T.H. Yeager, and C. Larsen

This research study evaluates the effectiveness of a recently introduced irrigation-plant production system, multipot box system (MPBS), for moderating root zone temperature (RZT) compared with the conventional nursery containers. The study also deals with the development, calibration, and validation of a series of models that can be used to predict maximum (max) and minimum (min) RZTs using commonly available input variables. The Viburnum odoratissimum (Ker.-gawl.) was used as the test plant. Models were calibrated in the fall growing season and validated during the summer. The RZT was used as the dependent variable while the max and min air temperatures (Tmax and Tmin) and/or incoming solar radiation (Rs) were used as independent variables. The color of the MPBS had an effect on plant growth. Plants grown in the white MPBS had higher growth indices, shoot and root dry weights, and number of stems as compared with the plants in the black MPBS or the conventional (control) system (CS). White MPBS maintained cooler RZTs than the max air temperature during both seasons. Also, white MPBS maintained cooler RZTs than the black MPBS and CS during the two seasons. In both seasons, water temperature in the black MPBS was higher than the temperature in the white MPBS contributing to the high RZTs in the black MPBS. The RZT of the black MPBS and CS exceeded the critical value (40 °C), which is cited in the literatures as negatively impacting root growth, water and nutrient uptake, leaf area, plant survival, root and shoot dry weights, water status, and photosynthesis. The RZT in the CS was above 45 °C for most of the summer season and plants were exposed to this extreme temperature for a few hours a day during most of the summer. The white MPBS provided a better environment and enhanced plant growth. For regions where ambient air temperature ranged from 2 to 41 °C, the white MPBS can provide adequate and effective RZT protection for plants grown in No. 1, 3.8-L standard black conventional containers. Predicted RZT values were well correlated with measured values in all systems. Rs did not have an effect on predicting RZTmax in the MPBS treatments. Wind speed did not contribute to predicting RZT in any production systems. The root mean square error between measured and predicted RZT was relatively low ranging from 0.9 to 2.8 °C. Models were able to explain at least 74% of the variability in RZTs using only Tmax, Tmin, and/or Rs. Models developed in this study should be applicable for estimating RZTs when similar management and cultural practices are present. Models of this study are practical, simple, and applicable to predict RZTs where ambient air temperature ranges from 1.9 to 40 °C. Model results should not be extrapolated beyond these limits.