Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: J. Perez x
  • HortTechnology x
Clear All Modify Search

Native plant sales have increased steadily during the past decade because of consumer concern with invasive plant sales, water conservation, and land management issues. However, native plants are still under-used mostly because of a small market and the lack of education on the use and care of native plants. For example, native plant sales in Florida accounted for only 11% of the total horticultural market in 2005. Within the Florida native plant industry, a small, but competitive market focuses on native wildflowers, but a paucity of information related to opportunities within this segment exists. We sent surveys to 137 members of the Florida native plant industry to learn about their interests, concerns, and trends in the native wildflower market. Survey respondents identified low demand, seed supply, and availability of desired species, plus insufficient customer and industry education as major factors limiting Florida native wildflower (FNW) sales. An overwhelming majority predicted that sales for locally produced FNWs would increase over the next 5 years. Respondents also stated that seed germination, seed storage, and seed production research are vital for the advancement of the industry. This survey provides an excellent opportunity to analyze the current native wildflower market and identify areas to help increase awareness of FNWs.

Full access

Mulch is often applied in landscape planting beds for weed control, but little research has focused specifically on mulch and preemergence (PRE) herbicide combinations. The objectives of this research were to determine the efficacy of herbicide + mulch combinations and which factors significantly affected weed control, including herbicide formulation and posttreatment irrigation volumes. Additional objectives were to determine efficacy derived from mulch or herbicides used alone under herbicide + mulch combinations and to identify differences in the additive (herbicide + mulch combinations) or singular (herbicide or mulch) effects compared with the use of herbicides or mulch only. Large crabgrass (Digitaria sanguinalis), garden spurge (Euphorbia hirta), and eclipta (Eclipta prostrata) were used as bioassay species for prodiamine, dimethenamid-P + pendimethalin, and indaziflam efficacy, respectively. The experiment consisted of a factorial treatment arrangement of two herbicide formulations (granular or spray applied), three mulch types [hardwood chips (HWs), pine bark (PB), and pine straw (PS)], two mulch depths (1 and 2 inches), and three levels of one-time, posttreatment irrigation volumes (0.5, 1, and 2 inches). Three sets of controls were used: the first set included three mulch types applied at two depths receiving only 0.5-inch irrigation volume, the second set included only two herbicide formulations and three one-time irrigation volumes, whereas the last set received no treatment (no herbicide or mulch) and only 0.5-inch irrigation volume. High levels of large crabgrass and garden spurge control (88% to 100%) were observed with all herbicide + mulch combinations evaluated at mulch depths of 1 inch or greater. When comparing mulch types, the best eclipta control was achieved with hardwood at 2 inches depth. The spray formulation of indaziflam outperformed the granular formulation in most cases when used alone or in combination with mulch. Overall, the results showed that spray formulations of prodiamine and dimethenamid-P + pendimethalin were more effective than granular formulations when applied alone, whereas indaziflam was more effective as a spray formulation when used both alone and in combination with mulch. Increasing irrigation volume was not a significant factor for any of the herbicide + mulch combinations when evaluating overall weed control.

Open Access

Field trials were conducted in two locations in Spain to determine the effect of methyl bromide (MBr) alternatives on soilborne diseases and nematodes, and strawberry (Fragaria ×ananassa) yields under high-tunnel conditions. Fumigant treatments were applied to the same plots each year. Treatments were MBr + chloropicrin (Pic) (50:50, v/v) at a rate of 400 kg·ha−1; 1,3-dichloropropene (1,3-D) + Pic (65:35, v/v) at 300 kg·ha−1; Pic at 300 kg·ha−1; dimethyl disulfide (DMDS) + Pic (50:50, v/v) at 500 kg·ha−1; propylene oxide at 550 kg·ha−1; dazomet at 400 kg·ha−1; and calcium cyanamide (Ca-cyanamide) at 700 kg·ha−1. A nontreated control was also included. Fumigation with MBr + Pic, 1,3-D + Pic, Pic, and DMDS + Pic consistently improved early and total marketable strawberry yields in both locations. This response was caused by successful soilborne fungus and nematode control, improving strawberry growth and development, which resulted in increased plant canopy diameters and higher strawberry early and total yield.

Free access