Search Results

You are looking at 1 - 10 of 11 items for :

  • Author or Editor: J. H. Edwards x
  • HortScience x
Clear All Modify Search
Authors: and

Fall and spring collards (Brassica oleracea L. Acephala Group) were grown under one of three mulches (black plastic, ground newspaper, wood chips) and in a bare soil control. Mulch treatments were arranged in a factorial design with five rates of N fertilizer: 0, 67, 134, 201, or 268 kg N/ha. All fertilizer was preplant-incorporated into the bed before applying mulches and transplanting collards. Season did not affect collard yield, and there was no significant season × N rate interaction. Collard yields increased with increasing rates of N, with a maximum yield at 163 kg N/ha. Mulch type significantly affected collard yield, with fall collard yields highest under bare ground or wood chip mulches and spring yields highest under black plastic mulch. Collards produced under newspaper mulch produced the lowest yields in the fall and yields equal to bare soil and wood chips in the spring. Collards produced under newspaper mulch had less tissue N at harvest than those of any of the other treatments in both seasons. Collards produced on black plastic produced the lowest plant populations in both seasons. Wood chips and newspaper offer some appeal as low-input, small-scale mulches, but additional research to explore fertility management is necessary.

Free access
Authors: and

A greenhouse pot study was conducted with a Wynnville sandy loam surface soil to determine the influence of application rates of poultry litter (PL) on growth and nutrient uptake of collard (Brassica oleracea, Acephata Group L., cv. Champion), and the residual effects of PL on growth and nutrient uptake of cabbage (Brassica oleracea, Capitata Group L., cv. Rio Verde). PL at 0, 13, 26, 53, and 106 g·kg–1 was incorporated into limed (pH 6.5) and nonlimed (pH 5.2) soil. Collard plants were grown for 52 days. The residual effects of PL were evaluated by growing three successive crops of cabbage without further application of PL (total 218 days). Collard plants were severely damaged or killed within 7 days after transplanting when the application rate of PL exceeded 26 g·kg–1 soil. Maximum dry matter yield of cabbage shifted from 26 to 106 g PL/kg soil during three successive crops. After four successive growth periods, 6% to 37% of N, 3% to 62% of Ca, 20% to 120% of K, 5% to 60% of Mg, and 3% to 25% of P added through PL was removed by plants. The decrease in water-extractable K accounted for the decrease in the soil salinity. Our results suggest that application rates of PL ≥ 53 g·kg–1 soil can result in elevated levels of salts and NH3 in soil, which can produce severe salt stress and seedling injury.

Free access

Abstract

Aluminum concentrations of 0, 3, 10, 30, and 100 ppm in nutrient solution reduced proportionately the dry weights of stem, roots, and leaves of seedlings of ‘Lovell’ peach [Prunus persica (L.) Batsch]. Roots grown at 30 and 100 ppm A1 were shorter, thicker, and had less branching than roots grown at lower concentrations. The epidermal and endodermal cells were small, with grossly thickened cell walls. Cells of the cortex were shortened in the longitudinal axes. Leaf A1 level indicated solution A1 better than did the A1 levels of roots, stems, or the 2% acetic acid-extractable A1 fraction of leaves, stems, or roots. The concentration of Ca, Mg, Mn, and P were reduced as A1 concentration increased.

Open Access

Abstract

Peach (Prunus persica (L.) Batsch) seedlings were grown in nutrient solutions containing 0, 222, 666, 1333 or 2000 μM Al. Diffusive resistance (DR) increased as Al concentrations increased and were significantly higher at 2000 μM Al than at lower concentrations. Stomatal apertures were larger on seedlings grown in 666 μM than those in 222 or 1333, those of the check were smaller, and those in 2000 μM Al were the smallest. Root volume decreased as Al concentrations increased. Changes in DR appeared to be more closely related to root volume than to stomatal aperture or density.

Open Access

Two studies were conducted to evaluate recycled newspaper mulch for landscape plantings. In the first study, two paper products (pellets and crumble) were tested at three depths. Application of either 25 or 50 mm provided excellent control of prostrate spurge. Of the four annuals grown, ageratum exhibited severe stunting of roots and shoots. In the second study, three annual species were mulched with the two recycled paper products applied at 25 mm each and adjusted with P at 0, 3.75, or 7.5 ppm to bind excess Al. When no P was added, ageratum growth was about half that of the control plants. Addition of P at either rate resulted in similar growth compared to control plants. Marigold and geranium were less affected by recycled paper mulch; however, when P was added growth was always similar to nonmulched control plants.

Free access

Blue color development in Hydrangea macrophylla is usually accomplished by applying Al as an alum drench. Drenches are applied during forcing 10–14 days after transplanting at a rate of 17,500 mg·L-1. Cultivars Blue Wave and Nikko Blue were used to evaluate if the Al contained in waste paper can provide the necessary Al for blue flower development. Two waste paper forms, pelletized and crumble, were used as surface mulches and as media amendments. The amendments were incorporated into the media at transplanting and mulches were applied either at transplanting or 28 days later. Alum drenching was initiated at transplanting as a control. Leachates were collected weekly using the VTEM. Total Al, electrical conductivity, and pH were determined on all samples. All waste paper treatments resulted in pink flowers in both cultivars. Leachate pH, from plants in this test, was >6.5. Aluminum concentration was greater than the 15 mg·L-1 Al needed for blue color development in flowers, but Al concentration decreased with time. Control of pH at the waste paper surface and in the media is critical for increasing the availability of labile Al for uptake by hydrangea.

Free access

Selected fertilizer treatments were applied to vinca (Catharanthus roseus `Peppermint Cooler') in the landscape to determine their effect on growth and nutrient leaching. In plots 0.9 m × 2.3 m, inorganic fertilizers were applied as either a single application of 4.9 g N/m2 pre-plant, or a split application with 4.9 g N/m2 applied pre-plant followed by application of 2.45 g N/m2 at 8 and 12 weeks after planting (WAP). Inorganic fertilizers included 15N–0P–12.6K granular fertilizer, Osmocote 14N–6.0P–11.6K, and Osmocote 17N–3.0P–10.1K controlled-release fertilizers. Three different organically based fertilizers were applied pre-plant and were composed of recycled newspaper amended with animal manures (chicken, beef cattle, or dairy) and adjusted with (NH4)2SO4 to achieve C:N ratios of either 20:1 or 30:1. A standard industry treatment of 13N–5.6P–10.9K (4.9 g N/m2) incorporated pre-plant and 17N–3.0P–10.1K (4.9 g N/m2) topdressed post-plant was also included. Leachates, collected with lysimeters, from inorganic fertilizer plots had lower levels of total N (NO3 + NH4 +) compared to organically based fertilizer plots through 8 WAP. Of the inorganic fertilizer plots, those receiving 15N–0P–12.6K granular fertilizer had higher total N levels at 1, 2, and 4 WAP than other inorganic fertilizer plots. Total N in leachates declined over the study and by 12 WAP were similar among all treatments. Vinca treated with organically based fertilizers (C:N 20:1) had the highest foliar color ratings through 8 WAP; however, color ratings declined thereafter and by 16 WAP had the lowest ratings. Plants treated with organically based fertilizers had greater shoot dry weights 20 WAP and larger growth indices 8 and 20 WAP.

Free access

Excessive moisture is a problem in evaluating recycled paper products as mulch to replace other common mulch materials and in landscape and container uses. To isolate the water associated with soil and/or media, two recycled paper products, pellets or crumble, were used as mulches in trade gallon containers in a greenhouse. Pine bark, pellets, and crumble needed to obtain standard mulch depth were enclosed in plastic mesh. These mulches were placed in containers that contained 1 kg of a 7 pine bark : 1 sand media. All containers were saturated with tap water for 24 hours. Mulches were placed on each container and allowed to drain for 1 hour. Weights of media, mulch, and media and mulch were obtained every 24 hours for a total of 312 hours. Water content of the media was not influenced by any of the mulch treatments. Water content of the paper products was increased by a factor of two. Pine bark mulch water content was zero 96 hours after an initial dry down cycle began, while the water content of pellet and crumble were 100 and 90 cm of water. Total water content of the media plus the mulch was increased by 30% to 35% when compared to pine bark mulch alone. However, the increase was associated with the water content of the waste paper mulch.

Free access

Two experiments were conducted to evaluate recycled newspaper products as nutrient filters in the bottom of containers. In Expt. 1 with poinsettia, Euphorbia pulcherrima Willd. ex Klotzsch `Glory', three paper products were evaluated: ground paper, paper crumble, and paper pellets; each placed 2 or 3 cm deep in the bottom of containers, so that drainage holes were covered. Leachate samples were collected at the first irrigation after each liquid fertilization. Nitrate (NO3 --N) and ammonium (NH4 +-N) leachate concentrations were reduced up to 84% with recycled paper pellets, compared to the control (no paper). Recycled paper retained up to 732 mg of nitrogen (N) per container (paper pellets 3 cm deep). Shoot dry weight was reduced with paper pellets but was not affected by ground paper or paper crumble. In Expt. 2, `Freedom Red' poinsettias were grown with either single weekly applications of 500 mg·L-1 N from Peter's 20N-4.3P-16.6K, or 200 mg·L-1 N at each irrigation (2 or 3 times a week, as needed). Recycled paper treatments included paper crumble or paper pellets placed 2.5 cm deep in the bottom of containers, and a control without paper. Leachate NO3 --N and NH4 +-N concentrations were reduced up to 100% and 94%, respectively, 6 days after planting (DAP), and up to 57% and 50%, respectively, 25 DAP with paper crumble compared to nonpaper control. Paper pellets in the bottom of containers retained up to 776 mg N per container. Poinsettia shoot dry weight was lowest with paper pellets in the bottom of containers and continuous fertilization.

Free access

Recycled paper pellets in the bottom of containers were evaluated for retention of N from container leachate. `Formosa' azalea were transplanted on 15 Apr. in 2.8-L containers in a pine bark/peat substrate (3:1; v/v). Treatments included paper (0 or 2.5 cm depth) in the bottom of containers and two rates of Osmocote 18–6–12 (0.68 kg or 1.36 kg N/yd3). Immediately after transplanting, plants were topdressed with 3.2 g of 12–4–6 fertilizer. Data collected included leachate samples every 2 weeks for NO3-N and NH4-N levels and destructive sampling every 4 weeks for shoot dry weight, foliar N, and total paper N. Nitrate-N and NH4-N leachate concentrations were reduced with the 0.68 kg N/yd3 fertilizer rate and with paper. For example, 28 days after planting (DAP) NO3-N leachate concentrations were reduced 36% with the 0.68 kg N/yd3 fertilizer rate and 46% with paper in the bottom of containers. NH4-N in the leachates was reduced 53% with the 0.68 kg N/yd3 fertilizer rate and 59% with paper. Azalea shoot dry weight was not affected by paper or fertilizer rate up to 112 DAP; however, as the study progressed, plants with paper in the bottom of containers grew larger than plants in no paper treatments (29% at 168 DAP, 31% at 196 DAP). Total N absorbed by paper was not affected by fertilizer rate, and peaked at 168 DAP [980 (0.68 kg N/yd3) to 1066 (1.36 kg N/yd3) mg per container, or 41% – 28% of applied N], after which it began to decline. This decline in paper N was associated with greater growth of azalea with paper.

Free access