Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: J. Fang x
Clear All Modify Search
Authors: , , , and

We used amplified fragment length polymorphism (AFLP) markers to analyze 14 fruiting mei cultivars from China and Japan. The levels of polymorphism and genetic relationship among cultivars were studied using two types of AFLP primer combinations [EcoR I + Mse I (E+M) and EcoR I + Taq I (E+T)] and the combined data from both types of primer combinations (E+M+T). The polymorphism among the cultivars was 57.92% based on E+M primers and 63.04% based on E+T primers. All three dendrograms generated by the three sets of data showed similar relationships among the fruiting mei cultivars. The corresponding main clusters contained the same cultivars and the subgroups correlated closely with the known geographic origins of the cultivars.

Free access

Plant tissue culture can induce a variety of genetic and epigenetic changes in regenerated plantlets, a phenomenon known as somaclonal variation. Such variation has been widely used in the ornamental foliage plant industry as a source for selection of new cultivars. In ornamental aroids alone, at least 63 somaclonal-derived cultivars have been released. In addition to morphological differences, many somaclonal aroid cultivars can be distinguished by amplified fragment length polymorphism (AFLP) analysis. However, a few cultivars have no detectable polymorphisms with their parents or close relatives by AFLP fingerprints. It is postulated that DNA methylation may be involved in the morphological changes of these cultivars. In this study, methylation-sensitive amplification polymorphism (MSAP) technique was used to study DNA methylation in selected somaclonal cultivars of Alocasia, Aglaonema, Anthurium, Dieffenbachia, Philodendron, and Syngonium. Results showed that polymorphisms were detected in the somaclonal cultivars, suggesting that DNA methylation polymorphisms may associate with tissue culture-induced mutation in ornamental aroids. This is the first study of methylation variation in somaclonal variants of ornamental foliage plants. The results clearly demonstrate that the MSAP technique is highly efficient in detecting DNA methylation events in somaclonal-derived cultivars.

Free access

Ornamental Ficus L. is a group of lactiferous trees, shrubs, and woody root-climbing vines that are cultivated either as landscape plants in the tropics and subtropics or as foliage plants used worldwide for interiorscaping. With the recent rapid expansion of the ornamental plant industry, more new Ficus species and cultivars have been introduced. However, no study has thus far addressed the genetic relationships of cultivated ornamental Ficus. Using amplified fragment length polymorphism (AFLP) markers with near-infrared fluorescence-labeled primers, this study analyzed the genetic relatedness of 56 commercial cultivars across 12 species. Forty-eight EcoRI + 2/MseI + 3 primer set combinations were initially screened, from which six primer sets were selected and used in this investigation. Most cultivars were differentiated by their AFLP fingerprints, and their relationships were determined using the unweighted pair-group method of arithmetic average cluster analysis. The 56 cultivars were divided into 12 clusters that correspond to 12 species, indicating that no interspecific hybrids of ornamental Ficus are in commercial production. The 12 species are genetically diverse, with Jaccard's similarity coefficients ranging from 0.21 to 0.43. However, cultivars within three species—Ficus benjamina L., Ficus elastica Roxb. Ex Hornem., and Ficus pumila L.—are genetically close. Twenty-seven of the 29 cultivars of F. benjamina and five cultivars of F. pumila had Jaccard's similarity coefficients of 0.98 or higher respectively. Nine cultivars of F. elastica shared Jaccard's coefficients higher than 0.96. These results indicate potential genetic vulnerability of these cultivars within the three species. Because there are increasing reports of invasive pests in the ornamental plant industry, strategies for conserving genetic resources and broadening genetic diversity of cultivated Ficus are discussed.

Free access