Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Irwin E. Smith x
  • All content x
Clear All Modify Search
Free access

Graham J. Wright and Irwin E. Smith

Composted pine bark is one of the most important substrates used in the seedling industry today. Previous work suggested the availability of inherent Potassium (K) in the bark. This research confirmed the availability of K and indicated that little or no K is needed for seedling production when pine bark is used as a substrate. Pre-enrichment rates ranged from 0 to 460 g.K.m-3, with a supplemental solution application of 0 to 200 mg.K.l-1. No evidence of K deficiencies or toxicities were detected. Three K sources, KCl, KNO3, and K2SO4 were used in the pre-enrichment of the bark. No differences were noted for top fresh mass, seedling height, root dry mass, root to shoot ratio and percentage moisture. Seedlings grown in treatments without and supplementary K showed tissue contents of 162.5 mg.K.kg-1. This research suggests the possibility of reducing the levels of-K applied to seedlings grown in a composted pine bark substrate.

Free access

John D. Lea-Cox and Irwin E. Smith

Pine bark is utilized as a substrate in citrus nurseries in South Africa. The Nitrogen (N) content of pine bark is inherently low, and due to the volubility of N, must be supplied on a continual basis to ensure optimum growth rates of young citrus nursery stock. Three citrus rootstock (rough lemon, carrizo citrange and cleopatra mandarin) showed no difference in stem diameter or total dry mass (TDM) when supplied N at concentrations between 25 and 200 mg ·l-1 N in the nutrient solution over a 12 month growing period. Free leaf arginine increased when N was supplied at 400 mg·l-1 N. The form of N affected the growth of rough lemon. High NH4-N:NO3-N (75:25) ratios decreased TDM when Sulfur (S) was absent from the nutrient solution, but not if S was present. Free arginine increased in leaves at high NH4-N (No S) ratios, but not at high NH4-N (S supplied) ratios. Free leaf arginine was correlated with free leaf ammonia. These results have important implications for reducing the concentration of N in nutrient solutions used in citrus nurseries and may indicate that higher NH4-N ratios can be used when adequate S is also supplied.