Search Results

You are looking at 1 - 10 of 25 items for

  • Author or Editor: Ingram McCall x
Clear All Modify Search
Full access

Brian E. Whipker and Ingram McCall

Plant growth retardant (PGR) foliar sprays of daminozide at 4,000 or 8,000 mg·L-1 (ppm) and paclobutrazol drenches of 2 or 4 mg a.i. per pot were applied to `Big Smile', `Pacino', `Sundance Kid', `Sunspot', and `Teddy Bear' pot sunflowers (Helianthus annuus L.) to compare their chemical height control. Plant height varied among the cultivars due to genetic variation. The percentage reduction in plant height from the untreated control only was significant at the PGR level, indicating similar responses of all five cultivars to each PGR rate. Paclobutrazol drenches at 2 mg and daminozide foliar sprays at 4,000 or 8,000 mg·L-1 reduced plant height by about 24% when compared to the control. Paclobutrazol drenches at 4 mg produced plants that were 33% shorter than the control. Plant diameter of `Big Smile', `Pacino', or `Sundance Kid' was unaffected by daminozide, whereas `Sunspot' plants were smaller than the controls. Paclobutrazol drenches at 2 or 4 mg decreased plant diameter for all cultivars except `Teddy Bear', with the reduction being greater as paclobutrazol drench rates increased. The number of inflorescence buds increased by ≥18% with the use of daminozide sprays, while paclobutrazol drenches at 2 or 4 mg had no effect when compared to the untreated control. Paclobutrazol drenches of 2 or 4 mg offer the economic advantage to growers of increased plant density on greenhouse benches, while plants treated with daminozide had an increased bud count but would require a greater amount of bench space.

Full access

Amy Barker, Ingram McCall and Brian E. Whipker

Three plant growth regulators (PGRs) were applied as substrate drenches; paclobutrazol (1, 2, 4, or 8 mg/pot), flurprimidol (0.5, 1, 2, or 4 mg/pot), or ethephon (125, 250, 500, or 1000 mg·L−1), plus an untreated control, to determine the efficacy of controlling excessive growth of ‘Imperial Dark Blue’ plumbago (Plumbago auriculata). No delay in flowering occurred with any of the PGR drenches, as compared with the untreated control. Plumbagos were responsive to both paclobutrazol and flurprimidol drenches. Concentrations of paclobutrazol and flurprimidol ≥1 mg/pot resulted in shorter plant heights than the untreated control. For producers desiring a moderate to high degree of control, 1 mg/pot drenches of either PGR could be suitable. All flurprimidol and paclobutrazol concentrations greater than 1 mg/pot resulted in excessive stunting and should be avoided. All ethephon drench concentrations were more consistent in controlling diameter, and increasing branching and flowering than paclobutrazol or flurprimidol. Based on the results of this study, the growth suppression of ethephon drenches was gradual, limiting overdose risks. Although plant diameters were not as small as plants treated with paclobutrazol or flurprimidol, diameter control was still adequate, and plants treated with ethephon drenches had a higher aesthetic appeal due to a more full appearance and increased flowering. With the use of an ethephon drench at 125 to 250 mg·L−1, plumbago producers have another PGR available to control excessive stem elongation and improve the flowering of plumbago.

Restricted access

Josh B. Henry, Ingram McCall, Brian Jackson and Brian E. Whipker

A series of experiments investigated the effects of increasing phosphate–phosphorus (P) concentrations on the growth and development of four horticultural species. In experiment 1, petunia [Petunia atkinsiana (Sweet) D. Don ex W.H. Baxter] plants were grown using eight P concentrations, and we found that the upper bound for plant growth was at 8.72–9.08 mg·L−1 P, whereas concentrations ≤2.5 mg·L−1 P caused P deficiency symptoms. Experiment 2 investigated P growth response in two cultivars each of New Guinea impatiens (Impatiens hawkeri W. Bull) and vinca [Catharanthus roseus (L.) G. Don]. Growth for these plants was maximized with 6.43–12.42 mg·L−1 P. In experiment 3, ornamental peppers (Capsicum annuum L. ‘Tango Red’) were given an initial concentration of P for 6 weeks and then switched to 0 mg·L−1 P to observe whether plants could be supplied with sufficient levels of P, and finished without P to keep them compact. Plants switched to restricted P began developing P deficiency symptoms within 3 weeks; however, restricting P successfully limited plant growth. These experiments indicated that current P fertilization regimens exceed the P requirements of these bedding plants, and depending on species, concentrations of 5–15 mg·L−1 P maximize growth.

Full access

Ben A. Bergmann, John M. Dole and Ingram McCall

Increasing cut stem length and reducing crop production time are producers’ goals for numerous cut flower species. One or both of these aims was met in several field-grown cultivars through foliar application of gibberellic acid (GA3), but effectiveness varied by cultivar, application rate, and timing. Of the 13 cultivars tested, stem length was increased in nine cultivars [Toreador Red celosia (Celosia argentea), Camelot White foxglove (Digitalis purpurea), Imperial Giants Pink Perfection larkspur (Larkspur hybrids), Compliment mix lobelia (Lobelia hybrids), Nippon Taka ornamental pepper (Capsicum annuum), Amazon Neon Duo and Bouquet Purple sweet william (Dianthus hybrids), Summer Pastels yarrow (Achillea millefolium), and Benary’s Giant Scarlet zinnia (Zinnia elegans)], and time to harvest was decreased in four cultivars [High Tide White ageratum (Ageratum houstonianum), lobelia, ornamental pepper, and zinnia], when GA3 was applied as a foliar spray. Concentrations of 400, 800, and 1600 mg·L−1 GA3 were most effective. Application of GA3 resulted in malformed or smaller flowers or lighter green foliage in foxglove, lobelia, sweet william, and zinnia. In most cases, only one application was tested, and greatest response to GA3 was observed during 3–6 weeks post application. Gibberellic acid did not influence stem length in three cultivars [High Tide White ageratum, Aurora Deep Purple delphinium (Delphinium hybrids), and Column Lilac Lavender stock (Matthiola incana)], and decreased flower stem length in one cultivar (High Tide Blue ageratum). Four cultivars were identified as good candidates for further research given their promising responses to GA3 treatments.

Full access

Jared Barnes, Brian Whipker, Ingram McCall and Jonathan Frantz

To produce floriculture crops like mealy-cup sage (Salvia farinacea), growers must be equipped with cultural information including the ability to recognize and characterize nutrient disorders. ‘Evolution’ mealy-cup sage plants were grown in silica-sand culture to induce, describe, and photograph symptoms of nutritional disorders. Plants received a complete modified Hoagland's all-nitrate solution of (macronutrient concentrations in millimoles) 15 nitrate-nitrogen (N), 1.0 phosphorus (P), 6.0 potassium (K), 5.0 calcium (Ca), 2.0 magnesium (Mg), and 2.0 sulfur (S) plus (micronutrient concentrations in micromoles) 72 iron (Fe), 18 manganese (Mn), 3 copper (Cu), 3 zinc (Zn), 45 boron (B), and 0.1 molybdenum (Mo). Nutrient-deficient treatments were induced with a complete nutrient formula minus one of the nutrients. The B-toxicity treatment was induced by increasing the element 10-fold higher than the complete nutrient formula. Reagent-grade chemicals and deionized (DI) water of 18 million ohms per centimeter purity were used to formulate treatment solutions. We monitored plants daily to document and photograph sequential series of symptoms as they developed. Typical symptomology of nutrient disorders and corresponding tissue concentrations were determined. Out of 13 treatments, 12 exhibited symptomology; Mo was asymptomatic. Symptoms of N, P, S, Ca, and K deficiencies and B toxicity manifested early; therefore, these disorders may be more likely problems encountered by growers. Unique symptoms were observed on plants grown under N-, Cu-, and Zn-deficient conditions. Necrosis was a common symptom observed, but use of other diagnostic criteria about location on the plant and progression of the disorder can aid growers in diagnosing nutrient disorders of mealy-cup sage.

Full access

Barbara A. Fair, Brian Whipker,, Ingram McCall and Wayne Buhler

Sages (Salvia sp.) have long been popular as summer annuals, culinary herbs, and landscape perennials. We selected ‘Hot Lips’ hybrid sage [Salvia ×microphylla (Salvia greggii × S. microphylla)], a recently introduced perennial sage, to assess efficacy of the growth regulator flurprimidol for controlling height. Substrate drenches of flurprimidol at 0, 0.25, 0.50, 1.0, 2, and 4 mg per pot were applied using 240 mL of solution per pot on 17 June 2010. Plant height was recorded at treatment, 27 days after treatment (DAT), and 48 DAT. Flurprimidol drench concentrations of 0.25 mg per pot and higher controlled plant height by 20% to 41% 27 DAT and by 26% to 50% 48 DAT. While all treatments at 48 DAT produced a significantly shorter plant, concentrations between 0.25 to 1 mg would provide growers options for controlling plant growth by 26% to 44%. Using concentrations over 1.0 mg did not produce any additional control of height in hybrid sage.

Free access

Brian A. Krug, Brian E. Whipker, Ingram McCall and Jonathan Frantz

High relative humidity (RH) can cause lower concentrations of boron (B) accumulating in plants. The common greenhouse practice of controlling excess temperatures by applying mist irrigation to young plants (plugs) can result in elevated RH levels, especially with plugs grown in high heat and humidity conditions of summer. ‘Dynamite Yellow’ pansy (Viola ×wittrockiana Gams.), ‘White Storm’ petunia (Petunia ×hybrida Vilm.), and ‘Festival Apricot’ gerbera (Gerbera jamesonii Bolus) plugs were grown in high or ambient RH conditions to determine the effect RH had on B uptake. Results indicate that an increase in RH decreased the amount of water the plant lost as a result of transpiration resulting in lower concentrations of B in shoot tissue. Boron concentrations in leaf tissue were 9.43, 10.56, and 17.81 mg·L−1 in pansy, petunia, and gerbera plants, respectively, grown in high RH conditions. These values were significantly lower than pansy, petunia, and gerbera plants grown in ambient RH conditions (19.94, 25.49, and 42.71 mg·L−1, respectively). Leaf distortion, consistent with B deficiency symptoms, was present in petunia and gerbera plants. Similar trends were observed when the experiment was repeated and leaf distortion was present in all species. This provides convincing evidence that the distorted growth observed in pansy, petunia, and gerbera plug production is the result of limited B caused by excessive humidity.

Full access

Paul Cockson, Josh B. Henry, Ingram McCall and Brian E. Whipker

To produce popular floriculture crops, such as gloxinia (Sinningia speciosa), growers must be equipped with cultural information including the ability to recognize and characterize disorders. Diagnostic criteria for nutrient disorders of gloxinia are absent from current literature. Therefore, gloxinia plants were grown in silica-sand culture to induce, characterize, and photograph symptoms of nutritional disorders. Control plants received a complete modified Hoagland’s all-nitrate solution, whereas nutrient-deficient treatments were induced with a complete nutrient formula minus a single nutrient. Boron toxicity was induced by increasing the element 10-fold higher than the complete nutrient formula. We monitored plants continuously to document and photograph sequential series of symptoms as they developed. Typical symptomology of nutrient disorders and critical tissue concentrations are presented. Of 13 treatments, 10 exhibited symptomology; copper, molybdenum, and zinc remained asymptomatic. Symptoms of nitrogen, phosphorus, potassium, magnesium, and sulfur deficiencies, plus boron toxicity manifested early; therefore, these disorders may be more likely problems encountered by growers. Unique symptoms were observed on plants grown in nitrogen, potassium, sulfur, and iron deficient and boron toxic conditions.

Full access

Ben A. Bergmann, John M. Dole and Ingram McCall

Responses of 14 to 20 poinsettia (Euphorbia pulcherrima) cultivars were assessed following exposure to environmental stressors common in the crop’s postproduction supply chain and consumer environment: low light levels, low temperatures, and low substrate moisture. As indicated by number of days to unacceptable appearance, 14 cultivars tolerated three low light levels (10, 20, and 40 µmol·m–2·s–1) well, with all individuals of six of the cultivars exhibiting an acceptable appearance at 7 weeks when the experiment ended. An experiment with 20 cultivars showed them to be surprisingly tolerant of low temperatures for a short duration, with no differences found when averaging across cultivars among plants exposed to 2, 5, or 20 °C for 2 days. However, all cultivars exposed to 5 °C for 10 days performed poorly. Cultivars differed markedly in response to low substrate moisture, with frequency of unacceptable plants before 4 weeks across all treatments ranging from 0% to 87% among the 14 cultivars tested. Across 17 cultivars, acceptable plant appearance was extended from 23 days for plants that were never irrigated after 10 d in sleeves to 32 days for plants that received a single irrigation at unsleeving and not thereafter. The low temperatures and low substrate moisture experiments were conducted in 2 years, and years differed significantly for nearly all dependent variables assessed. The significant interaction between year and cultivar for all observed variables in those two experiments indicates the importance of conducting experiments such as these over 2 years or more. Potted plants of many of the poinsettia cultivars tested proved to be highly tolerant in terms of low light levels, low temperatures, and low substrate moisture. Three cultivars appeared to be most tolerant in two of the three experiments: Prestige Red (low light levels and low temperatures), Titan Red (low temperatures and low substrate moisture), and Whitestar (low light levels and low substrate moisture). Three cultivars were most tolerant to all three sources of postproduction plant stress: Christmas Day Red, Early Mars Red, and Titan White.

Full access

Brian E. Whipker, Ingram McCall and Brian A. Krug

Flurprimidol was applied as a foliar spray (12.5, 25.0, 37.5, 50.0, or 62.5 mg·L-1) or as a substrate drench (0.015, 0.03, 0.06, 0.12, or 0.24 mg/pot a.i.) to determine its efficacy on `Blue Champion' exacum (Exacum affine). Flurprimidol substrate drenches were more consistent in controlling plant growth than foliar sprays. Substrate drenches of 0.03 mg/pot a.i. or foliar sprays ≥50 mg·L-1 resulted in smaller plant heights and diameters than the untreated control. With the use of flurprimidol, exacum growers have another plant growth regulator (PGR) available to control excessive growth.