Search Results
Two experiments evaluated the Trevett (1972) Cu standard of 7 ppm by raising leaf Cu concentrations in a commercial blueberry field having low (∼4 ppm) leaf Cu concentrations. A foliar spray of Cu Keylate (5% Cu) (Stoller Enterprises, Inc.) in a volume of 627 L·ha-1 applied 0, 0.56 1.12, 1.68, or 2.24 kg·ha-1 of Cu. Ammonium sulfate at 3.1 kg·ha-1 was added to the solutions to enhance Cu absorption. A preemergent soil application of Micromate Calcium Fortified Mix (Stoller Enterprises, Inc.), a micronutrient mixture containing Cu (0.3%), was also tested at 14 kg·ha-1. These 6 treatments were replicated 7 times in a randomized complete-block design in 2001. Treatments were reapplied in 2003 in a split-plot design with Cu treatments as the main plots and an application of DAP at 448 kg·ha-1 as the split plots. In 2001, leaf Cu concentrations increased linearly, up to 12 ppm, with increasing rates of Cu, but Micromate had no effect. Leaf N and P concentrations were below the standards of 1.6% and 0.125%, respectively, and could explain why raising leaf Cu concentrations had no effect on growth or yield. In 2003, DAP corrected the N and P deficiency and leaf Cu concentrations were raised to above the 7 ppm standard with 2.24 kg·ha-1 of Cu, but again, no effect on growth or yield was found. The Cu standard appears to be too high.
Four organic fertilizers were evaluated in a commercial lowbush blueberry field with a history of N and P deficiency. In nonorganic production, diammonium phosphate (DAP) is the standard fertilizer for correcting N and P deficiency. Nitrogen a rate of 67 kg·ha-1 [Renaissance (8-2-6), ProHolly (4-6-4), Pro Grow (5-3-4), Nutri-Wave (4-1-2), or DAP (18-46-0)] was applied preemergent to 1.8-m × 15-m treatment plots. Leaf N and P were deficient (<1.6% and 0.125%, for N and P, respectively) in the unfertilized plots that served as controls. DAP and Pro-Holly raised leaf N to satisfactory levels (>1.6%). Only DAP raised leaf P concentrations (0.144%), compared to controls (0.122%). Leaf K was not deficient, but was raised by Pro-Holly. Soil pH was slightly lowered by Renaissance (4.2) and raised by Pro-Holly (4.4), compared to the control (4.3). Soil P concentrations were raised by DAP and soil S by Pro-Holly. Soil K was raised by all fertilizers except DAP, compared to the control. Pro-Holly and DAP were equally effective in increasing stem height, branching, branch length, flower bud formation, and yield, compared to the control and the other organic fertilizers. Pro-Holly could effectively substitute for DAP in organic wild blueberry production.