Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Igor Kostenyuk x
Clear All Modify Search
Free access

Fernando Alferez, Shila Singh, Igor Kostenyuk and Jacqueline Burns

Abscission is a natural plant process that culminates in the removal of organs from the parent plant. Control of abscission remains an important goal of agriculture, but events that initiate and transduce abscission signals have not been well defined. An understanding of these events may reveal pathways that can be targeted to control abscission. The compound 5-chloro-3-methyl-4-nitro-1H-pyrazole (CMNP) is a pyrazole-derivative that induces abscission selectively in mature citrus (Citrus sinensis) fruit when applied to the canopy. Peel contact is essential for efficacy. Previous work identified CMNP as an uncoupler. Timing of CMNP-induced events in citrus flavedo indicated that increased reactive oxygen species and electrolyte leakage occurred within 30 minutes and 2 hours after application, whereas reduced ATP content was measured 3 hours after application. Phospholipase A2 (PLA2) and lipoxygenase (LOX) activities, and lipid hydroperoxide (LPO) levels increased in flavedo of citrus fruit peel treated with CMNP, indicating that the lipid signaling pathway was activated. A specific inhibitor of PLA2 activity, aristolochic acid (AT), reduced CMNP-induced increases in PLA2 and LOX activities and LPO levels in citrus flavedo and greatly reduced abscission, suggesting that production of phospholipid-derived signals influence abscission process. However, AT treatment failed to halt the reduction in ATP content, indicating that reduction in ATP preceded the increase in PLA2 activity and the biological response. The results demonstrate a link between lipid signaling and abscission in citrus.

Free access

Luis Pozo, Rongcai Yuan, Igor Kostenyuk, Fernando Alférez, Guang Yan Zhong and Jacqueline K. Burns

1-MCP is a gaseous ethylene binding inhibitor that controls or delays ethylene-related postharvest problems in a range of horticultural commodities. Our previous work demonstrated that exposure of calamondin to 1-MCP 16 hours before canopy sprays of ethephon greatly reduced unwanted leaf drop while only partially inhibiting the ability of ethephon to cause fruit loosening. The objective of this work was to determine whether formulated 1-MCP (SmartFresh) could be used in the field to stop defoliation caused by abscission agent applications without significantly altering abscission agent-induced fruit loosening. Spray solutions containing 400 mg·L-1 ethephon with 0, 1, 2.5, and 5 mm 1-MCP were applied to canopies of `Hamlin' and `Valencia' (Citrus sinensis). Timing of 1-MCP applications was a) 24 hours before, b) in combination with, or c) 24 hours after ethephon. Ethephon at 400 mg·L-1 significantly reduced fruit detachment force (FDF) but caused >70% leaf drop within 15 days after application in both cultivars. Applications of 1-MCP reduced ethephon-associated leaf abscission but had little effect on the ability of ethephon to reduce FDF. Timing of 1-MCP applications did not affect the ability of ethephon to cause fruit loosening; however, the best consistent treatment for control of leaf drop was achieved with the combined application of 5 mm 1-MCP and 400 mg·L-1 ethephon. 1-MCP was used in combination with the abscission agents coronatine, methyl jasmonate (MeJa) and 5-chloro-3-methyl-4-nitro-1H-pyrazole (CMNP) to determine its effect on leaf drop and fruit loosening. Leaf drop in trees treated with ethephon, coronatine, and MeJa was reduced by addition of 1-MCP. However, fruit loosening was largely prevented when 1-MCP was used in combination with coronatine or MeJa. Like ethephon, CMNP-induced fruit loosening was not affected by 1-MCP. The results demonstrate the ability to control ethephon-induced leaf abscission without affecting mature fruit loosening by targeting ethylene binding in citrus.

Free access

Rongcai Yuan, Fernando Alferez, Igor Kostenyuk, Shila Singh, James P. Syvertsen and Jacqueline K. Burns

The effects of 2 consecutive years of annual defoliation during the harvest season on fruit size, yield, juice quality, leaf size and number were examined in trees of the midseason cultivar `Hamlin' and the late-season cultivar `Valencia' orange [Citrus sinensis (L.) Osb.]. In `Hamlin', removal of up to 50% of the leaves in late November had no effect on fruit yield, fruit number, fruit size, soluble solids yield, juice °Brix, and °Brix to acid ratio of juice the following year. In `Valencia', removal of 50% of the leaves in late March decreased fruit yield and soluble solids yield but did not affect Brix or the Brix to acid ratio of the juice. Leaf size of new flush was reduced by removal of 50% of the leaves in both cultivars but there was little effect on total canopy size. There were no measured effects of removing 25% of leaves from tree canopies. Thus, canopy growth, fruit yield, fruit quality, and leaf size were not negatively impacted when annual defoliations did not exceed 25% of the total canopy leaf area in `Valencia' and `Hamlin' orange trees for two consecutive years. Overall, fruit weight increased linearly with increasing ratio of leaf area to fruit number, suggesting that fruit enlargement can be limited by leaf area.

Free access

Timothy M. Spann, Luis V. Pozo, Igor Kostenyuk and Jacqueline K. Burns

In Florida, the combined use of mechanical harvesters and the abscission agent 5-chloro-3-methyl-4-nitro-1H-pyrazole (CMNP) for late-season harvesting (May to June) of fruit of ‘Valencia’ orange is effective at removing mature fruit with minimal adverse effects on the subsequent season's crop. However, CMNP can cause fruit peel scarring, and no data were available on how this affects peel integrity and potential losses resulting from fruit crushing and/or decay before processing. In this study, two late-season harvest dates were tested in commercial orchards during 2009 and 2010. Harvesting treatments consisted of combinations of two mechanical harvester ground speeds (0.8 and 1.6 km·h−1), two harvester shaker head frequencies (185 and 220 cycles/min), and CMNP foliar applications (4 days before harvesting) at 250 and 300 mg·L−1 in a spray volume of 2810 L·ha−1 plus mechanically-harvested and hand-picked controls. After harvesting, fruit samples were randomly collected from each block for peel resistance and postharvest decay evaluations. Peel resistance was determined by measuring both peel puncture force and fruit crush force. Fruit used to study postharvest decay were stored at 27 °C and 50% relative humidity or ambient conditions and evaluated daily for 8 days. Peel resistance was unaffected by mechanical harvesting combinations or CMNP application. No significant effects on postharvest decay were found among treatments for at least 3 days after harvest. However, a significant increase in postharvest decay between CMNP-treated and untreated fruit began between 4 and 6 days after harvest such that by 8 days after harvest, decay was as high as 25% in CMNP-treated fruit. The results indicate that CMNP can be safely used in combination with late-season mechanical harvesting under the conditions described in this study without losses resulting from fruit crushing or decay for at least 3 days, a time period well within the normal commercial harvest-to-processing time of ≈36 h.

Free access

Rongcai Yuan, Francisco Garcia-Sanchez, Fernando Alferez, Igor Kostenyuk, Shila Singh, Guangyan Zhong, James Syvertsen and Jacqueline Burns

The effect of annual defoliation over two consecutive years on fruit yield, juice quality, leaf size, and number was examined in 11-year-old `Hamlin' and 13-year-old `Valencia' orange [Citrus sinensis (L.) Osb.] trees. Removal of up to 50% of the leaves in late November had no effect on fruit number, fruit weight, fruit yield, soluble solids yield, juice °Brix, and °Brix: acid ratio of juice in `Hamlin' oranges. In `Valencia' oranges, removal of up to 50% of the leaves in late March also did not affect °Brix or the °Brix: acid ratio of the juice, but decreased fruit yield and soluble solids yield. Leaf size was reduced by removal of 50% of the leaves in both cultivars. Removal of up to 50% leaves in late November had no significant influence on net CO2 assimilation (aCO2) of the subsequent spring flush leaves in early May in `Hamlin' oranges, whereas aCO2 of `Valencia' spring flush leaves in early May increased linearly with increasing levels of defoliation in late March. The results indicate that fruit yield, fruit quality, leaf size, and number were not negatively impacted when annual defoliations did not exceed 25% of the total canopy leaf area for `Valencia' and `Hamlin' oranges for two consecutive years. Overall, in whole `Hamlin' or `Valencia' orange trees, fruit weight increased linearly with increasing ratio of leaf area to fruit, suggesting that fruit enlargement depends on available photosynthate and can be limited by leaf area.