Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Hyun Hwan Jung x
Clear All Modify Search

Phytoremediation of volatile organic compounds in indoor air involves both the plant and microbes in the media; however, removal rate is typically expressed on a leaf area basis. We determined the effect of root media volume on phytoremediation rate of volatile toluene and xylene to determine if there is a change in phytoremediation efficiency. Phytoremediation rate was calculated based on the aboveground space occupied by the plant and on the leaf area. Foliage plants of Fatsia japonica and Draceana fragrans ‘Massangeana’ were grown in different-sized pots (1, 2, 4, 6, and 12 L) that gave aerial plant to root zone volume ratios of 21:1, 21:2, 21:3, and 21:6. Total root volume and root fresh weight increased in D. fragrans with increasing media volume, whereas root density per unit of media volume decreased in both species. The efficiency of volatile toluene and xylene removal by the plants was increased as the root zone volume increased, whereas removal efficiency per unit media volume increased and then decreased. The highest volatile toluene and xylene removal efficiency was at a ratio of 21:3 (aerial plant:root zone volume) in F. japonica and 21:2 in D. fragrans. When phytoremediation efficiency was expressed on a leaf area basis, the phytoremediation rate for toluene and xylene increased progressively for both species with increasing media volume and as root volume increased. Calculating the amount of plant material needed within a home or office to obtain sufficient volatile organic compound (VOC) removal cannot be accurately predicted base solely on a leaf area (LA) or aboveground volume basis.

Free access