Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Huifang Wang x
Clear All Modify Search

Sulforaphane is an anticarcinogenic isothiocyanate derived from 4-methylsulfinylbutyl glucosinolate (glucoraphanin), which is abundant in broccoli (Brassica oleracea var. italica) florets. However, some breakdown products from alkenyl glucosinolates present in many broccoli cultivars, particularly oxazolidine-2-thione hydrolyzed from 2-(R)-hydroxy-3-butenyl glucosinolate (progoitrin), have potentially harmful effects on human and animal health. The main objective of this study was to improve the glucoraphanin concentration in F1 hybrids by cross-breeding with inbred lines and doubled haploids. Glucoraphanin concentrations in 31 of the 61 F1 hybrids were significantly higher (P = 0.05) than that of the commercial cultivar (Youxiu) with the highest concentration of glucoraphanin (4.18 μmol·g−1 dry weight) among eight reference cultivars. Sixteen of the F1 hybrids had glucoraphanin concentrations 3-fold higher than that of ‘Youxiu’. Alkenyl glucosinolates were not detected in the new hybrids as a result of the parents having few of these compounds but were found in five reference cultivars. Most F1 hybrids showed moderate indole glucosinolate concentrations and acceptable commercial traits. IL609 and IL702.2 were determined to be promising parental lines as a result of the high glucoraphanin concentration that they and their offspring contained. The findings also indicated that some F1 hybrids do not show the high-glucoraphanin character of their parents; consequently, evaluation of these F1 hybrids for their glucosinolate content is required for breeding high-glucoraphanin broccoli.

Free access

Citrus microcarpa is a popular nutritious fruit that is widely cultivated in China. In recent years, many compounds with significant pharmacological activities have been isolated successfully from the pericarp of C. microcarpa. However, to date, there are no reports on the activity of C. microcarpa pericarp against root-knot nematodes. This study used the ethanolic extract from the pericarp of Hainan C. microcarpa and the impregnation method to determine its activity on J2 Meloidogyne enterolobii specimens and on single-egg hatching. The results showed that when J2 individuals were treated with 50 mg⋅mL–1 of the extract, the lethal concentration 50 values after 24 and 48 hours were 17.124 and 8.858 mg⋅mL–1, respectively. The mortality rate of nematodes after 48 hours of treatment was 100%, and the inhibition rate of single-egg hatching after 24 hours was 89.29%. The ethanolic extract of C. microcarpa peels showed high inhibitory and lethal activity against the M. enterolobii. The analysis of the chemical composition of the extract revealed 28 substances with insecticidal and antibacterial effects, including lignans, flavonoids, fatty acids, organic acids, terpenoids, and imidazole. The formulas of the chemical structures and pharmacological effects of these potential insecticidal and antibacterial substances were elucidated to provide a scientific basis and a theoretical reference for the use of C. microcarpa pericarps as a raw material for the development of new, natural plant nematicides.

Open Access