Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Hui-lian Xu x
Clear All Modify Search

`Capello' tomato plants (Lycopersicon esculentum Mill.) were grown in a greenhouse in peat-based substrate (70% sphagnum peat and 309'. perlite, by volume) and supplied with nutrient solutions of high (4.5 mS·cm-1) or low (2.3 mS·cm-1) electrical conductivity (EC) under high (95% ± 5%) or low (55% ± 8% of capillary capacity) soil water conditions. Three weeks after treatments started, stomatal transpiration (TRst) and cuticular transpiration (TRcu) rates were measured by three methods: 1) analyzing TRst and TRcu from a water retention curve obtained by drying excised leaves in air under a photosynthetic photon flux (PPF) of 400 μmol·m-1·s-1, 2) analyzing TRst and TRcu from a transpiration decline curve obtained by measuring transpiration rates after cutting the leaf from the stem of the dehydrated plant in the gas-exchange system, and 3) measuring transpiration rates under light and in dark respectively using the gas-exchange method. TRst and TRcu were decreased by high EC and/or low soil water content. For method 1, the transpiration decline curve shows two distinct phases: the initial steep slope that indicates TRst and the gently sloped section that indicates TRcu. Both slopes were lower for high EC and/or water-stressed plants compared to the control (low EC and high soil water content). The tangent lines of these two phases of the curve intersect at one point (t, w). The value oft that indicates the time for stomatal closure was longer and the value of w that indicates the critical tissue water level for stomatal closure was lower for high EC and/or water-stressed plants. In method 2, the initial rate of total transpiration was higher in high EC and/or water-stressed plants. Leaf wax content increased, especially under high EC stress. This suggests that increased deposition of wax prevents water loss from the cuticle. A delay in complete stomatal closure, complete closure at lower RWC, and reduced TRcu or an increase in wax deposit were adaptations to water and salinity stresses in tomato plants under our controlled environmental conditions.

Free access

Tomato plants were grown in peat bags in greenhouse to examine the effects of variation of the nutrient solution electrical conductivity (EC) and substrate water potential (Ψsub) on photosynthesis in leaves, fruits, stem, and petioles. EC of the nutrient solution delivered to peat bags varied between 1 to 4 dS·m–1 with Ψsub of either –5 kPa or –9 kPa as the setpoint for starting the irrigation. The EC variation was adjusted by a computer system according to potential evapotranspiration. Gross photosynthetic capacity (PC) decreased as the leaf age developed. PC in the 10th, 15th and 18th leaves from the top was only 76%, 37%, and 18% of PC in the 5th leaf, respectively. However, low quantum use efficiency (QUE) was only observed in the 18th leaf and low dark respiration (RD) was only in 15th and 18th leaves. Net photosynthesis (PN) was only observed in young fruits (≈10 g FW) or young petioles and no PN was observed in large fruits (50 g or more FW) and stems. Both PC and RD were lower in older fruits and petioles or in the lower part of the stem compared to the younger ones or upper parts. EC variation increased PC, QUE, and RD in most parts. Low Ψsub increased RD in most parts and decreased PC in fruits, stem, and petioles. It is suggested that EC variation increased plant physiological activity of tomato and low Ψsub increased carbon consumption, although it was not severe enough to depress leaf PC.

Free access

Tomato plants were grown in peatmoss-based substrate and supplied with nutrient solution of high (4.5 mS·cm–1) or low (2.3 mS·cm–1) electrical conductivity (EC) under high (95%) or low (55% of capillary capacity) substrate water content (SWC) to examine the effects of high EC and low SWC on growth and physiology. Salts were allowed to accumulate in the substrate for 7 weeks. Both high EC and low SWC significantly decreased dry matter production (DMP) and fruit yield (FY). Fruit harvest index was lower in high EC- or low SWC-treated plants. Decrease in marketable FY was attributed to both the decrease in total FY and the increase in small and abnormal (cracked and rot) fruits. Both high EC and low SWC decreased photosynthesis (PN) and leaf water potential (ΨL). However, chlorophyll content and respiration were increased by high EC under both high and low SWC. Water consumption based on both whole plant and unit of leaf area was decreased by high EC and low SWC. ΨL and transpiration were depressed by high EC and low SWC, especially at midday. There was a significant positive correlation between fruit yield and water consumption. The effects of high EC and low SWC were additive on most of the variables. Decreases in ΨL might ultimately account for water consumption reduction, PN depression, and FY decrease.

Free access

Water potential at soil–root interface (ψ s-r) indicates soil water availability to the plants. It is related to plant water potential and transpiration. To know the characteristics of ψ s-r, in the plants under a subirrigation system, hysteresis of ψ s-r, as well as xylem water potential (ψ x) and transpiration were examined in response to soil dehydration for Prunus × cistena grown in three soil mixes: mix 1-composted bark, peat, and sand; mix 2—peat, bark, sand, and compost; and mix 3—peat, sawdust, and sand. When the soil mixes were dried from high to low water potential (ψ s), plants grown in mix 2 maintained higher ψ s-r, as well as higher ψ x and higher transpiration. However, when the soil mixes were dehydrated from the bottom, the relationships of ψ s-r, ψ x, and transpiration to ψ s showed strong hysteresis effect. ψ s-r was always lower at a given ψ s when soil was rewetted from dry to wet conditions than when soil was dried from wet conditions. ψ x and transpiration also showed hysteresis in response to soil dehydration. The extent of hysteresis was the largest in mix 2 and the smallest in mix 3. Hysteresis of ψ X or transpiration showed a similar trend to that of ψ s-r. This suggests that ψ s-r is a good indicator of soil water availability to the plants and more directly related to ψ X and transpiration than is ψ s. The difference in hysteresis of ψ s-r among soil mixes might be related to the properties of hydraulic conductance, which are determined by the soil texture. Hence, further study is needed to elucidate the mechanism of the hysteresis phenomenon.

Free access

Tomato plants (Lycopersicon esculentum Mill. cv. Capello) were grown in peat bags, rockwool slabs, and NFT in a greenhouse to examine the effects of nutrient solution electrical conductivity (EC) and potential evapotranspiration (PET)-dependent EC variation on plant water relations. Peat bags were irrigated by a PET-dependent irrigation system. EC was varied from 1 to 4 mS·cm-1 according to PET under –5 and –9 kPa of substrate water potential setpoints (SWPS). The plants in rockwool and NFT were treated with ECs of 2.5, 4, and 5.5 mS·cm-1. Peat bags and rockwool slabs were overwatered once a week to wash out the accumulated salts. Leaf water potential (ψ1) and relative water content (θ) were measured before and after plants were overwatered. Turgor (P) and osmotic π potentials were estimated from the pressure-volume method. Before plants were overwatered, ψ1 was significantly lower in the plants with high EC and low SWPS treatments and also lower in variable EC-treated plants, but P maintained close to the control value. After plants were overwatered, ψ1 recovered close to the control level and P became higher because of the lower π in the treatments of high EC, variable EC, and/or low SWPS. At a given ψ1 the plants with high EC, variable EC, and/or low SWPS maintained higher θ. The analysis of the pressure-volume curve showed that the leaves treated with high EC, variable EC, and/or low SWPS had higher turgid water content, higher symplasmic (osmotically active) water content, lower apoplasmic (osmotically inactive) water content, and lower θ point of zero turgor (incipient plasmolysis). Maintenance of P after overwatering was directly proportional to photosynthetic capacity. We suggest that osmotic adjustment occurs in response to high EC, low SWPS, or both and that overwatering substrates and varying EC can not only avoid salinity stress, but also improve turgor maintenance.

Free access

Jinyan (Actinidia eriantha × A. chinensis) is one of the gold-fleshed kiwifruit cultivars currently being promoted in south China. However, its fruit dry matter is usually less than 16%, which seriously affects fruit quality including taste and flavor. This causes a financial loss to growers: not only are the prices paid for the fruit low because of their bad reputation for quality, but some orchards have been removed. Improvement of fruit quality is essential. In this study, a method is described for squeezing and twisting flowering shoots before flowering and removing the distal vegetative parts of flowering shoots after fruit set. The effects on fruit quality were determined. The dry matter of fruit was increased by 6.6%. Fruit size also increased as did the chlorophyll a content and the chlorophyll:carotenoid ratio. The significantly increased fruit dry matter, resulting in significant increases in fruit soluble solids concentrations (P < 0.01), thereby possibly improving fruit taste. Fruit weight, fruit length, and carotenoid and ascorbic acid concentrations were significantly enhanced in comparison with controls (P < 0.01), increasing by 20%, 7%, 12%, and 19%, respectively. However, there was no significant difference in soluble sugar concentrations, titratable acid concentrations, and the reduced chlorophyll b concentrations. This research provides a practical method to increase fruit dry matter, and hence a way to allow fruit quality to reach commercial requirements for cultivars such as Jinyan, which under previous management systems had significant shortcomings in fruit flavor and taste.

Open Access