Search Results

You are looking at 1 - 10 of 12 items for

  • Author or Editor: Hui Yang x
Clear All Modify Search

Water scarcity is a major problem for crop production around the world including Southwestern United States and growers are increasingly using groundwater for agriculture in Southern New Mexico. Most of the groundwater in New Mexico is brackish and continuous long-term use could lead to salt accumulation in the soil. Reverse osmosis (RO) can desalinate brackish groundwater (BGW), however, environmentally safe disposal of RO concentrate is costly. This greenhouse study evaluated the effects of BGW and RO concentrate at various growth stages of two chile pepper cultivars, NuMex Joe E. Parker and NuMex Sandia Select. Five salinity treatments were applied to plants, three of them used saline waters of 0.6 (control), 4.0 (BGW), and 8.0 dS/m (RO) throughout the growing season, whereas the other two changed waters of 4.0 and 8.0 dS/m to waters of 2.0 and 6.0 dS/m from the beginning of the flowering stage. Number of flowers, days to flowering, relative plant heights, relative fresh biomass, fruit yields, photosynthetic rate (Pn), stomatal conductivity (g S), and actual evapotranspiration (ETa) significantly decreased with increasing irrigation water salinity levels. Concentrations of Mg2+, Na+, and Cl in plants increased with increasing water salinity levels. Changing to irrigation with reduced salinity waters of 2.0 and 6.0 dS/m at the flowering stage initiated reproductive development more rapidly and alleviated the adverse influence of salinity on the number of flowers of chile pepper, plant height, Pn, as well as fresh shoot and fruit weight than that with continuous irrigation with electrical conductivity (EC) of 4.0 dS/m and 8.0 dS/m beyond the flowering stage. Irrigation that practices a change from high salinity to lower salinity at the flowering stage can optimize the use of saline irrigation water for growing chile peppers.

Open Access

‘Tainong 1’ mango fruit were treated with hot water for 10 minutes at 55 °C and then stored at 5 °C for 3 weeks. After removal from low-temperature storage, the effects of hot water treatment (HWT) on chilling injury (CI), ripening and cell wall metabolism during storage (20 °C, 5 days) were investigated. HWT reduced the CI development of the fruit as manifested by firmer texture, external browning, and fungal lesions. A more rapid ripening process, as indicated by changes in firmness, respiration rate, and ethylene production, occurred in heated fruit after exposure to low temperature as compared with non-heated fruit. At the same time, the cell wall components in heated fruit contained more water-soluble pectin and less 1,2-cyclohexylenedinitrilotetraactic acid (CDTA)-soluble pectin than those in non-heated fruit. HWT also maintained higher polygalacturonase [enzyme classification (EC) 3.2.1.15] and β-galactosidase (EC 3.2.1.23) activities as well as lower pectin methylesterase (EC 3.1.1.11) activity. In general, the changes of ripening and cell wall metabolism parameters in the heated fruit after low-temperature storage exhibited a comparable pattern to that of non-cold-stored fruit.

Free access

Tobacco is traditionally an industrial crop that is used for manufacturing cigarettes. However, due to health concerns and global tobacco control movements, alternative uses of tobacco are urgently needed to support tobacco farmers and vendors. Tobacco is also an oilseed crop with an oil yield ranging from 30% to 40 of its dry weight. However, there is still no information on the effects of nitrogen application on tobacco seed yield and seed oil production. The objective of this study was to evaluate the effects of N fertilization (90, 120, 150, and 180 kg·ha−1 N) on the seed yield, oil content, fatty acid composition, and seed germination characteristics of tobacco plants at two locations. The results showed that applying increasing amounts of N to tobacco plants significantly increased their total seed yields and oil content. Nitrogen application also modified the fatty acid composition of the seed oil, as more unsaturated fatty acids were produced under the increasing N application rate treatments than under the control. Moreover, increasing the N application rate generally significantly increased the yields of individual fatty acids as well. Nevertheless, the increased seed oil content and altered fatty acid composition did not affect seed germination traits, as the seed germination potential and rate showed no obvious change among treatments or the control. The height and size of the tobacco plants also increased with the increasing N application rate, which would be beneficial for increasing biomass production for bioenergy. This study shows for the first time the feasibility of increasing the seed and oil yields and modifying the fatty acid composition of tobacco plants by increasing N addition.

Open Access

Potassium (K) is a critical plant nutrient that determines quality in a myriad of crops and increases production yields. However, excessive application of various types of K fertilizers can decrease both the food quality and yields, which translates as economic losses and food safety issues. The objectives of this study were to 1) elucidate the impacts of different application rates of various K fertilizers on garlic, with the aim to identify the optimal and most economical K fertilizer dosage and 2) compare the effects of applying two common K fertilizers (KCl and K2SO4) on garlic, to determine the optimal combination. From 2018 to 2020, we utilized two distinct K-fertilized fields to conduct our experiments. The results revealed optimal KCl fertilization increased the biomass and vegetation index in garlic, and promoted the transfer of nitrogen, phosphorus, and potassium nutrients from the stem and leaf to bulb, thereby increasing bulb production. The application of KCl fertilizer increased the number of cloves, the diameters of the cloves and bulbs, and reduced variations in bulb size. In addition, the application of KCl fertilizer improved the nutritional quality (Vitamin C, soluble sugar, soluble protein, and allicin) of the garlic and reduced the accumulation of nitrate. However, excessive KCl fertilizer cause decreased yields, appearance traits, and nutritional quality. Applying the same rate of K fertilizer in the form of K2SO4 in isolation increased the garlic yield by only 0.1% to 22.5% when compared with KCl fertilizer. However, the results were not always significant. In this study, the highest yields, appearance traits, and nutritional quality were achieved with the ratio of K2SO4: KCl = 3:1. Consequently, to ensure the highest economic value (considering the market prices of K fertilizer, garlic sprouts, and bulbs), the authors recommend a K fertilizer rate of 252.5 kg·ha−1 K2O, with K2SO4 accounting for 61.6% for garlic production in field.

Open Access

Extrapyramidal symptoms (EPSs) are common adverse reactions to antipsychotics in patients with schizophrenia. The purpose of this study was to investigate the effects of edible horticultural therapy (EHT) on EPSs in schizophrenic patients. This study assessed the changes in psychopathological symptoms and extrapyramidal symptoms in patients with schizophrenia before and after participating in a six-session EHT. Forty schizophrenic patients, recruited from Wuhan Wudong Hospital, were randomly assigned to the EHT group (average age: 45.40 ± 13.960 years) or the control group (average age: 49.30 ± 12.516 years). The EHT program held weekly sessions from May 2020 to June 2020. A psychiatrist assessed the psychopathological symptoms and extrapyramidal symptoms of schizophrenic patients in both groups with the Chinese version of the Positive and Negative Syndromes Scale (PANSS) and the Rating Scale for Extrapyramidal Side Effects (RSESE). After six courses of horticultural therapy, the terms of positive, negative, and general symptoms on the PANSS significantly improved in the EHT group. Moreover, the EPSs were also significantly improved in the EHT group. However, there was no change in the PANSS and RSESE scores in the control group. This study shows that EHT has the potential to improve not only psychopathological symptoms but also EPSs in psychiatric patients. This adds new evidence for EHT as an adjunct to treatment for schizophrenia.

Open Access

Pedicularis rex C. B. Clarke ex Maxim., an endemic species with potential horticultural traits from Himalaya, has a unique cup-like petiole structure and highly infraspecific floral variation among members of the lousewort genus (Orobanchaceae). We developed 13 microsatellite markers from three microsatellite-enriched libraries (AG, AC, and AAG) of P. rex with a modified biotin–streptavidin capture technique. Polymorphism of each locus was assessed in 22 individuals with representation of five populations of P. rex. Number of alleles per locus (A) ranged from two to seven with an average of 4.38. The observed and expected heterozygosities varied from 0.03 to 0.86 and 0.45 to 0.84, respectively. Additionally, among the 13 identified microsatellite markers, 11 of them were successfully amplified in species P. thamnophila, and five of them showed polymorphisms. This study may provide important information for further investigation on the population genetics, introduction, and acclimatization of P. rex and its congeners.

Free access

Hydrangea macrophylla is the most popular species in the genus Hydrangea because of its large and brightly colored inflorescences. Since the early 1900s, numerous cultivars with showy flowers have been selected. Although many H. macrophylla cultivars have been developed, cold hardiness is still the major limitation to their outdoor use. Hydrangea arborescens is a small attractive shrub or subshrub native to northeastern parts of the United States, which is valued for its hardiness. Interspecific breeding of H. arborescens and H. macrophylla has been tried, but putative hybrid seedlings either died at an early stage or were not verified. We made successful hybridizations between H. macrophylla ‘Blue Diamond’ and H. arborescens ‘Annabelle’ and used in vitro ovary culture to produce viable plants. Hybrids were intermediate in appearance between parents, but variable in leaves, inflorescences, and flower color. The success of this hybridization was confirmed by six simple sequence repeat (SSR) genetic markers. The maternal chromosome number was 36, and the paternal number was 38. Chromosome counts of hybrids indicated that nearly half of them were aneuploids. Male fertility of progeny was evaluated by fluorescein diacetate staining of pollen. Twelve out of 14 hybrids (85.7%) had male fertility. We documented the first flowering progeny of H. macrophylla and H. arborescens, suggesting an effective beginning to a cold hardiness breeding program.

Free access

Air-root pruning (AP) has been identified as an effective technique for enhancing root growth and development. However, little information is available regarding the temporal changes in the root system of Platycladus orientalis (L.) Franco under AP. We performed integrated morphological, physiological, and anatomical analyses of the roots in P. orientalis seedlings that had been air-root pruned for 120, 150, and 190 days. Our results found that the whole root length, number of root tips, and root surface area of AP seedlings at 120, 150, and 190 days were higher than those of the non–root-pruned (NP) seedlings (P < 0.05), but the average root diameter did not differ significantly between the treatments. Compared with NP treatment, AP increased the root length, surface area, number of tips, and specific root length of the ≤0.5 mm diameter roots in P. orientalis during the experimental periods (P < 0.05), but those of 0.5- to 1-mm-diameter roots were only increased on day 190 (P < 0.05). The AP plants also exhibited higher root vitality and proportion of live fine roots than the NP plants (P < 0.05). Our anatomical evaluation of the ≤0.5 mm roots and taproots revealed features that could account for the morphological differences found between the AP and NP plants. In conclusion, our results indicate that air-root pruning induced changes in the roots that promote the root system development in P. orientalis compared with the NP treatment during the experimental period. These results thus provide experimental evidence to support the use of AP in P. orientalis seedlings.

Free access

Flesh browning is an important negative trait for quality preservation of fresh-cut fruits. To obtain a better understanding of the inheritance and genetic control of flesh browning in apple, the phenotype of a hybrid population derived from ‘Jonathan’ × ‘Golden Delicious’ was studied for 2 successive years. The inheritance of the flesh browning trait was analyzed by the frequency distribution of the phenotypes. Flesh browning-associated major genes were then mapped by screening genome-wide simple sequence repeat (SSR) markers. Flesh browning is inherited quantitatively and showed a clear bimodal frequency distribution, indicating that the segregation of major genes is involved in the variation. The segregation ratio of light and heavy browning was 7:1 in 2010, 2011, and 2010 + 2011, suggesting that the inheritance of the trait in apple involves three segregated loci of major genes. The heritability of the major gene effect was 72.14% and 72.76% in 2010 and 2011, respectively. SSR markers were screened from 600 pairs of SSR primers located on 17 apple linkage groups (LGs). The three major genes were mapped on LG10, 15, and 17 on the apple genome, respectively, by linkage analysis of flesh browning phenotypes and the genotypes of SSR markers. Two quantitative trait loci (QTLs) for flesh browning were mapped on LG15 of ‘Jonathan’ and LG17 of ‘Golden Delicious’, respectively, which are the same linkage groups that two major genes mapped on.

Free access