Search Results
Chrysanthemums have beautiful flowers with high ornamental value and rich genetic diversity. Amplified fragment length polymorphism (AFLP) markers were used to detect the relationships among 12 wild accessions and 62 groundcover chrysanthemum cultivars. Nineteen EcoRI/MseI primer combinations revealed 452 informative polymorphic bands with a mean of 23.8 bands and 71.5% polymorphic rate per primer pair. Jaccard’s coefficient of similarity varied from 0.64 to 0.89, indicating much genetic variation in chrysanthemums. The 74 accessions were classified into two major groups by unweighted pair group method with the arithmetic averages (UPGMA). The dendrogram showed that AFLP variability was closely correlated with both geographic distribution and traditional classification of the wild accessions. Among all accessions, genetic relationship was the most relevant factor in AFLP-marker clustering, whereas petal type was also informative. AFLP technology could be very efficient for discriminating species of chrysanthemum and its related genera and reconstruct their genetic relatedness.
A set of Petunia hybrida plants encompassing a range of ploidy levels was developed through colchicine-mediated induction of chromosome doubling. The resulting double-flower tetraploid plants were cross-hybridized with inbred single-flower diploid lines to generate F1 populations with segregation for ploidy level and flower type. The initial in vivo application of colchicine to seedling apical tips produced mixoploid plants of petunia at a high rate of efficiency. Thus, 95% of the shoot tips treated with colchicine for 48 h resulted in polyploid mutant plants, and no difference in this efficiency was observed using concentrations of colchicine between 0.2 and 2.0 mg·mL−1. Of the polyploid plants, 10% were found to be tetraploid and 85% were mixoploid (chimeric). Compared with their diploid counterparts, polyploid plants underwent reduced elongation growth during the first 2 weeks and had thicker stems and shorter internodes resulting in dwarfing of the whole plant. In extreme cases, very slow growth rates produced stunted plantlets. Polyploid plants also had larger, thicker leaves and, in some cases, the leaves that developed after 1 month of growth appeared seriously malformed. Octoploid plants were also obtained and these tended to have more extreme phenotypes. Pure tetraploid plants of double-flower petunia were isolated by the in vitro culture of explants from the initial chimeric tetraploid mutants. These were crossed with three inbred single-flower diploid lines (S1, S2, and S3) thereby generating F1 populations that showed segregation for flower type and ploidy level and included the generation of triploid plants. In the tetraploid plants, flower diameter and the number of flower petals were not changed significantly (P > 0.05) compared with the original diploid double-flower plants, but observation of the pollen grains revealed segregation for size consistent with the increased ploidy level. Analysis of the F1 progeny plants also indicated that chromosome number is not necessary but sufficient to cause the production of semidouble-flowered plants. Flower color and flower diameter were also analyzed in the F1 progeny and complex patterns of inheritance were inferred. In addition to single and double flowers, semidouble-flowered plants were also suggested to be generated by the hybridization of 2n or 3n pollen from the double-flower tetraploid plants with the single-flower diploid lines.
This experiment was carried out to obtain a pressure–volume (P-V) curve and Höfler diagram of the cortex tissue of fresh ‘Fuji’ apple fruit (Malus ×domestica Borkh.) with a novel centrifuge method. Based on the P-V curve and Höfler diagram, several water relation parameters of cortex tissue were determined and the interrelationship of these parameters was established. Turgor loss point (TLP) occurred at –1.74 MPa and 73.7% of relative water content (R*). At full hydration, osmotic potential (ψS) was –1.30 MPa and symplastic water accounted for 86.8% of R*. Bulk elastic modulus decreased linearly by 28% as pressure potential declined from 1.30 MPa at full hydration to zero at the TLP. This centrifuge technique can provide a simple and efficient way to determine water relation parameters of fleshy fruits.
This study explored the effects of different colored bags (blue, green, white, yellow, orange, and red) on russet deposition on the peel of semi-russet ‘Cuiguan’ pears 10 days after full bloom (DAFB). The process of russeting of the peel and structure of the cork layer were characterized by microscopy and scanning electron microscopy (SEM), followed by the detection of lignin and the activity of enzymes involved in lignin synthesis. The expression of cinnamate-4-hydroxylase, 4-coumarate:coenzyme A ligase, cinnamyl alcohol dehydrogenase, cinnamoyl-CoA reductase, and peroxidase, which were related to phenylalanine ammonia-lyase, was determined via real-time quantitative polymerase chain reaction. Russeting of the outer peel of ‘Cuiguan’ pear accumulated rapidly at 80 DAFB, and a positive relationship between the russet index and lignin content was observed. Red and infrared (IR) ray, partial far-IR light (600–800 nm), and ultraviolet-A light (350–400 nm) promoted russeting in ‘Cuiguan’ pear peel, whereas green light decreased russeting, the russet index, enzymatic activities, and the expression levels of enzymes involved in lignin synthesis. Values of all these factors were higher for ‘Cuiguan’ pears in red bags than for those in bags of other colors. These findings suggested that spectral components affected the synthesis of lignin and the formation of fruit russet. Storage in green bags reduced russeting and improved fruit appearance.
Jinyan (Actinidia eriantha × A. chinensis) is one of the gold-fleshed kiwifruit cultivars currently being promoted in south China. However, its fruit dry matter is usually less than 16%, which seriously affects fruit quality including taste and flavor. This causes a financial loss to growers: not only are the prices paid for the fruit low because of their bad reputation for quality, but some orchards have been removed. Improvement of fruit quality is essential. In this study, a method is described for squeezing and twisting flowering shoots before flowering and removing the distal vegetative parts of flowering shoots after fruit set. The effects on fruit quality were determined. The dry matter of fruit was increased by 6.6%. Fruit size also increased as did the chlorophyll a content and the chlorophyll:carotenoid ratio. The significantly increased fruit dry matter, resulting in significant increases in fruit soluble solids concentrations (P < 0.01), thereby possibly improving fruit taste. Fruit weight, fruit length, and carotenoid and ascorbic acid concentrations were significantly enhanced in comparison with controls (P < 0.01), increasing by 20%, 7%, 12%, and 19%, respectively. However, there was no significant difference in soluble sugar concentrations, titratable acid concentrations, and the reduced chlorophyll b concentrations. This research provides a practical method to increase fruit dry matter, and hence a way to allow fruit quality to reach commercial requirements for cultivars such as Jinyan, which under previous management systems had significant shortcomings in fruit flavor and taste.