Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Hui Gao x
Clear All Modify Search

‘Tainong 1’ mango fruit were treated with hot water for 10 minutes at 55 °C and then stored at 5 °C for 3 weeks. After removal from low-temperature storage, the effects of hot water treatment (HWT) on chilling injury (CI), ripening and cell wall metabolism during storage (20 °C, 5 days) were investigated. HWT reduced the CI development of the fruit as manifested by firmer texture, external browning, and fungal lesions. A more rapid ripening process, as indicated by changes in firmness, respiration rate, and ethylene production, occurred in heated fruit after exposure to low temperature as compared with non-heated fruit. At the same time, the cell wall components in heated fruit contained more water-soluble pectin and less 1,2-cyclohexylenedinitrilotetraactic acid (CDTA)-soluble pectin than those in non-heated fruit. HWT also maintained higher polygalacturonase [enzyme classification (EC) 3.2.1.15] and β-galactosidase (EC 3.2.1.23) activities as well as lower pectin methylesterase (EC 3.1.1.11) activity. In general, the changes of ripening and cell wall metabolism parameters in the heated fruit after low-temperature storage exhibited a comparable pattern to that of non-cold-stored fruit.

Free access

Cold hardiness evaluation is important for screening woody species in cold areas. We compared cold hardiness by estimating the 50% lethal temperature (LT50) using electrolyte leakage test (ELLT50) and triphenyltetrazolium chloride test (TTCLT50) for 26 woody species in the Bashang region of China. One-year-old shoots were collected in January and exposed to five subfreezing temperatures in a programmable temperature and humidity chamber. LT50 was estimated by fitting relative electrolyte leakage and percentage of dead tissue against test temperature. For all tested species, triphenyltetrazolium chloride (TTC) staining of the pith was weak and the cambium TTCLT50 was lower than the extreme minimum temperature (−37 °C) recorded in the region. The cambium TTCLT50 and the sd were lower than that for the phloem and xylem. The phloem TTCLT50 was lower than the xylem TTCLT50, and the two sds were similar. The ELLT50 showed no significant correlation with any TTCLT50. For most species, the ELLT50 was higher than the cambium and phloem TTCLT50 and was not significant different with the xylem TTCLT50. The ELLT50 showed higher sd than any tissue TTCLT50. Based on results obtained in this study, when choosing cold hardiness of single stem tissue as an indicator for screening woody species, the xylem should be considered first, followed by the phloem; the cambium and pith were unsuitable. The cold hardiness estimated by ELLT50 was more suitable as indicator for screening woody species than that of stem tissue in winter estimated by TTCLT50.

Open Access

Hydrogen sulfide (H2S) was recently recognized as an endogenous gaseous molecule involved in seed germination, root organogenesis, abiotic stress tolerance, guard cell movement, and delay of senescence in plants. In the present study, we show that H2S participates in the regulation of postharvest ripening and senescence in fresh-cut kiwifruit, Actinidia deliciosa. Fumigation of fresh-cut kiwifruit with the H2S donor sodium hydrosulfide (NaHS) solution prolonged kiwifruit storage time and alleviated senescence and tissue softening in a dose-dependent manner at an optimal concentration of 1.0 mmol·L−1 NaHS. H2S treatment maintained higher levels of reducing sugars, soluble proteins, free amino acids, ascorbate, and chlorophyll and lowered carotenoid levels. H2S treatment also significantly decreased the contents of malondialdehyde (MDA), hydrogen peroxide (H2O2) and superoxide anion (O2 ) during fruit storage compared with water controls. Furthermore, the activities of guaiacol peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) were increased by H2S treatment, whereas the activity of lipoxygenase (LOX) was decreased compared with untreated controls. Taken together, these results suggest that H2S is involved in prolonging postharvest shelf life and plays an antioxidative role in fresh-cut kiwifruit.

Free access

The database of grape transcription factors (DGTF) is a plant transcription factor (TF) database comprehensively collecting and annotating grape (Vitis L.) TF. The DGTF contains 1423 putative grape TF in 57 families. These TF were identified from the predicted wine grape (Vitis vinifera L.) proteins from the grape genome sequencing project by means of a domain search. The DGTF provides detailed annotations for individual members of each TF family, including sequence feature, domain architecture, expression information, and orthologs in other plants. Cross-links to other public databases make its annotations more extensive. In addition, some other transcriptional regulators were also included in the DGTF. It contains 202 transcriptional regulators in 10 families.

Free access

An efficient biolistic transformation system of banana combined with a liquid medium selection system was developed during this study. An embryogenic cell suspension (ECS) of Musa acuminata cv. Baxi (AAA) was bombarded with a particle delivery system. After 7 days of restoring culture in liquid M2 medium, embryogenic cells were transferred to a liquid selection M2 medium supplemented with 10 μg/mL hygromycin for resistance screening. The untransformed cell clusters were inhibited or killed, and a small number of transformants proliferated in the liquid selection medium. After the 0th, first, second, and third generation of antibiotic screening, there were 0, 65, 212, and 320, respectively, vitality-resistant buds obtained from a 0.5-mL packed cell volume (PCV) of embryogenic cell suspension. The β-glucuronidase (GUS) staining, polymerase chain reaction (PCR) analysis, and Southern blot hybridization results all demonstrated a 100% positive rate of regenerated resistant seedlings. Interestingly, the number of buds obtained through third-generation screening was almost equal to that obtained from the original ECS in M2 medium without antibiotics. These results suggested that the liquid medium selection system facilitated the proliferation of a positive transgenic ECS, which significantly improved the regeneration rate of transformants. This protocol is suitable for the genetic transformation of all banana genotypes and is highly advantageous to varieties with low callusing potential.

Open Access