Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Hsuan Chen x
Clear All Modify Search
Full access

Jason D. Lattier, Hsuan Chen and Ryan N. Contreras

Althea (Hibiscus syriacus) is a shrub prized for its winterhardiness and colorful summer flowers. Altheas are tetraploids (2n = 4x = 80); however, breeders have developed hexaploids and octoploids. Previous studies report anatomical variation among polyploids, including stomata size. The purpose of this study was 4-fold. First, identify genome size and ploidy variation in cultivars via flow cytometry and chromosome counts. Second, create a ploidy series consisting of 4x, 5x, 6x, and 8x cytotypes. Third, investigate the ploidy series for variation in stomatal guard cell lengths, stomatal density, and copy number of fluorescent ribosomal DNA (rDNA) signals. Fourth, investigate segregation patterns of rDNA signals in a subset of pentaploid seedlings. Flow cytometry revealed most cultivars to be tetraploid with holoploid 2C genome sizes from 4.55 ± 0.02 to 4.78 ± 0.06 pg. Five taxa (‘Aphrodite’, ‘Pink Giant’, ‘Minerva’, Azurri Satin®, and Raspberry Smoothie™) were hexaploids (6.68 ± 0.13 to 7.05 ± 0.18 pg). Peppermint Smoothie™ was a cytochimera with tetraploid cells (4.61 ± 0.06 pg) and octoploid cells (8.98 ± 0.13 pg). To create pentaploids, reciprocal combinations were made between hexaploid ‘Pink Giant’ and tetraploid cultivars. To create octoploids, seedlings were treated with agar solutions containing 0.2% colchicine or 125 μM oryzalin. Guard cell lengths were significantly different among the four cytotypes: 4x (27.36 ± 0.04 μm), 5x (30.35 ± 1.28 μm), 6x (35.59 ± 0.63 μm), and 8x (40.48 ± 1.05 μm). Measurements of stomatal density revealed a precipitous decline in average density from the 4x cytotype (398.22 ± 15.43 stomata/mm2) to 5x cytotype (194.06 ± 38.69 stomata/mm2) but no significant difference among 5x, 6x, and 8x cytotypes. Fluorescent in situ hybridization (FISH) revealed an increase in 5S and 45S rDNA signals that scaled with ploidy: 4x (two 5S + four 45S), 6x (three 5S + six 45S), and 8x (four 5S + eight 45S). However, pentaploid (5x) seedlings exhibited random segregation of rDNA signals between the 4x and 6x cytotypes, including all six possible combinations (two 5S, three 5S) × (four 45S, five 45S, six 45S).

Full access

Hsuan Chen, Lan Xue, Tong Li and Ryan N. Contreras

Hibiscus syriacus is a woody shrub in the Malvaceae family that is common in landscapes due to its broad adaptability and variable ornamental characteristics. Interspecific hybridization has been used to improve Hibiscus by building novel floral traits, hybrid vigor, and hybrid infertility. A few interspecific hybrid Hibiscus cultivars (H. syriacus × H. paramutabilis), such as Lohengrin and Resi, are notable because of their vigorous vegetative growth, female infertility, and large flowers. However, little is known about the male fertility and breeding potential of these hybrid cultivars, which could increase flower size by backcrossing to H. syriacus. In this study, we estimated male fertility of the two hybrid cultivars by acetocarmine staining and in vivo pollination and assessed selection methods for floral traits, specifically flower size and petal number. A BC1F1 population of 294 individuals was developed by crossing hybrid cultivars Lohengrin or Resi with a variety of double-flowered H. syriacus cultivars. A negative correlation between petal number and petal area was detected by quantile regression, which is a method that circumvents the problem of simple linear regression, which violates statistical assumptions. Quantile regression was used to build simultaneous selection thresholds for different levels of required stringency. As expected, the female fertility of hybrid cultivars was extremely low or zero; however, the male fertility of hybrid cultivars was not reduced compared with H. syriacus cultivars. A negative linear correlation between the petal number and petal area of the BC1F1 individuals was observed. In addition, quantile regression was recommended to set a single selection threshold to be applied to the selection of two negatively correlated traits, which was more effective than independent selection of petal numbers and petal areas among progeny.

Full access

Jason D. Lattier, Hsuan Chen and Ryan N. Contreras

Chromosome numbers are an important botanical character for multiple fields of plant sciences, from plant breeding and genetics to systematics and taxonomy. Accurate chromosome counts in root tips of woody plants are often limited by their small, friable roots with numerous, small chromosomes. Current hydrolysis and enzyme digestion techniques require handling of roots before the root squash. However, optimum chromosome spread occurs when the cell walls have degraded past the point of easy handling. Here, we present a new enzyme digestion protocol that is fast, efficient, and flexible. This protocol reduces handling of the roots allowing for long-duration enzyme digestion. Digestions are performed on a microscope slide, eliminating the need for handling digested cells with forceps or pipettes. To illustrate the flexibility of this method across woody plant taxa, we performed chromosome counts on five angiosperms and one gymnosperm. Ploidy levels included diploids, triploids, and tetraploids with chromosome numbers ranging from 2n = 16 to 2n = 80. The range of holoploid 2C genome sizes spanned 1.54–24.71 pg. This protocol will provide a useful technique for plant cytologists working with taxa that exhibit a wide range of genome size and ploidy levels.

Open access

Hsuan Chen, Jason D. Lattier, Kelly Vining and Ryan N. Contreras

Lilacs (Syringa sp.) have been used as ornamental plants since the mid-16th century and remain important in modern gardens due to their attractive and fragrant flowers. However, a short flowering season is a critical drawback for their ornamental value. Breeders have identified remontancy (reblooming) in dwarf lilac (Syringa pubescens), and have tried to introgress this trait into related species by interspecific hybridization. Molecular tools for lilac breeding are limited because of the shortage of genome sequence knowledge and currently no molecular markers are available to use in breeding for remontancy. In this study, an F1 population from crossing Syringa meyeri ‘Palibin’ × S. pubescens ‘Penda’ Bloomerang® Purple was created and subjected to genotyping-by-sequencing (GBS) analysis and phenotyped for remontancy. Plants were categorized as remontant, semi-remontant, and nonremontant based on the relative quantity of inflorescences during the second flush of flowers. A total of 20,730 single-nucleotide polymorphism (SNP) markers from GBS were used in marker-trait association to find remontant-specific marker(s) without marker position information. Two SNP markers, TP70580 (A locus) and TP82604 (B locus), were correlated with remontancy. The two loci showed a partial epistasis and additive interaction effects on the level of remontancy. Accumulation of recessive alleles at the two loci was positively correlated with increased reblooming. For example, 87% of aabb plants were remontant, and only 9% were nonremontant. In contrast, 100% of AaBB plants were nonremontant. These two SNP markers associated with remontancy will be useful in developing markers for future breeding and demonstrate the feasibility of developing markers for breeding woody ornamental taxa that lack a reference genome or extensive DNA sequence information.

Full access

Chen-Yu Lin, Kan-Shu Chen, Hsuan-Ping Chen, Hsiang-I Lee and Ching-Hsiang Hsieh

This study investigated the effects of different temperature treatments (18, 24, and 30 °C) on apex development in tropical cauliflower cultivars of varying maturity types. Two commercial cultivars, H-37 (early maturity) and H-80 (mid–late maturity), were used as the testing materials. ‘H-37’ reached the curd-initiation phase earlier than ‘H-80’ and showed superior growth during the curd’s initial development phase under all temperature treatments. Analysis of variance revealed significant effects regarding main temperature and cultivar as well as their interaction. ‘H-37’ at a temperature of 18 °C demonstrated the optimal transformation of apex development from the vegetative to reproductive stage. A temperature of 24 °C promoted the apex development of ‘H-37’ at the curd initial development phase. Gene expression analysis results indicated that the BoFLC2 expression of ‘H-37’ was significantly down-regulated than that of ‘H-80’ after curd initiation and advanced growth. A temperature 30 °C accelerated the ending of juvenile stage and forward to curd initiation in ‘H-80’ and declined with temperature decreased. Moreover, expression of the BoFLC2 transcript level of both tropical cauliflower cultivars nearly disappeared at the high temperature of 30 °C following curd initiation, suggesting that heat stress hinders curd formation. The results of this study also indicate that the number of leaves required to induce curd initiation is less than nine in tropical cauliflower at temperatures of 18 to 30 °C. In conclusion, under nonvernalized high temperatures, different cultivars of tropical cauliflower can initiate curd development but with a different pattern from those cultivars grown in temperate zones. This information may provide novel insights for cauliflower farmers or breeders in tropical regions.

Full access

Ryan C. Graebner, Hsuan Chen, Ryan N. Contreras, Kathleen G. Haynes and Vidyasagar Sathuvalli

Conventional wisdom regarding potato breeding indicates that a strong triploid block prevents the development of viable triploid seeds from crosses between tetraploid and diploid clones. However, in a recent set of crosses between elite tetraploid potatoes and an improved diploid hybrid population derived from group Stenotomum and group Phureja, 61.5% of the resulting clones were found to be triploid. If clones derived from one diploid parent suspected of producing a high frequency of unreduced gametes were excluded, then the frequency of triploid clones increased to 74.4%. Tubers of these triploids are generally intermediates of the two parental groups. Our findings indicate the possibility of using triploid potatoes in potato variety development programs and in genetic and genomic studies.