Search Results

You are looking at 1 - 10 of 25 items for

  • Author or Editor: Howard F. Harrison x
Clear All Modify Search
Free access

Howard F. Harrison Jr. and Philip D. Dukes

Four sweetpotato [Ipomoea batatas (L.) Lam.] clones were evaluated for metribuzin tolerance in greenhouse and field experiments. W-262 exhibited metribuzin response similar to the highly tolerant clone Tinian (U.S.P.I. 153655). SC 1149-19 was highly sensitive to metribuzin, and the commercial cultivar Jewel was intermediate in tolerance. Due to its more desirable horticultural characteristics and higher yields, W-262 is superior to Tinian as a source of metribuzin tolerance in sweetpotato breeding. Chemical name used: 4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)-one (metribuzin).

Free access

Mark W. Farnham and Howard F. Harrison

The discovery that broccoli (Brassicaoleracea L., Italica Group) sprouts contain high levels of sulforaphane, a constituent that may provide chemoprotection against certain carcinogens, has stimulated much interest in seed production of this crop. Studies were undertaken to determine the potential for producing broccoli seed using self-compatible selections from open-pollinated (OP) populations or doubled-haploid (DH) programs. In all outdoor and greenhouse trials, three OP selections and seven DH lines produced selfed seed, but seed weight per plant and number per plant varied significantly among the entries. In all environments there were individuals with relatively high (i.e., >3 g/plant) production that were significantly different from low (i.e., <2 g/plant) producers. The relative productivity of some lines varied greatly between experiments, which indicates that seed production of particular genotypes is affected differently by environmental conditions. This indicates the importance of identifying lines that are high producers of selfed seed across different environments. Two OP cultivar-derived lines (USVL102 and USVL104) and two DH lines (USVL062 and USVL093) were identified that consistently produced relatively high yields in greenhouse and screen cage trials. These lines are good candidates for evaluating seed production in field tests and as possible sources of seed for sprouting.

Free access

Richard L. Fery and Howard F. Harrison Jr.

Greenhouse and field studies were conducted to determine the genetic relationship between bentazon tolerance exhibited by the pepper (Capsicum annuum L.) cultivars Bohemian Chili and Santaka, and to evaluate the importance of cytoplasmic factors in expression of the tolerance in `Bohemian Chili.' Greenhouse evaluation of parental and F2 populations of the cross `Santaka' × `Bohemian Chili' indicated that the major dominant gene conditioning bentazon tolerance in `Bohemian Chili' is probably the Bzt gene that conditions bentazon tolerance in `Santaka' or a gene closely linked to the Bzt locus. Field evaluation of F1 and F2 progeny populations of the cross `Bohemian Chili' × `Sweet Banana' in both `Bohemian Chili' and `Sweet Banana' cytoplasms demonstrated that cytoplasmic factors do not affect the expression of the bentazon tolerance gene in `Bohemian Chili.' We conclude that `Santaka' and `Bohemian Chili' are equally satisfactory sources of a bentazon tolerance gene for use in pepper breeding programs. Chemical name used: 3-(1-methylethyl)-(1H)-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide (bentazon).

Free access

Richard L. Fery and Howard F. Harrison Jr.

Experiments were developed to study the inheritance of the high level of tolerance to the herbicide bentazon exhibited by the pepper (Capsicum annuum L.) cultivar Santaka. Parental, F1, F2, and backcross populations of the cross `Santaka' × `Keystone Resistant Giant' were evaluated for injury in a greenhouse test using bentazon at a rate of 4.5 kg·ha-1 (1.1 kg×ha-1 is the rate recommended for most applications). Additionally, parental and F1 populations were evaluated for injury under field conditions using sequential bentazon applications of 4.5, 4.5, 6.75, and 9.0 kg·ha-1. A single, dominant gene determined tolerance. F1 hybrid plants (heterozygous at the locus conditioning tolerance) exhibited a high level of tolerance under field conditions. Results of the greenhouse test suggested a possible cytoplasmic involvement in the expression of the tolerance gene, but the results of the field test provided strong evidence that cytoplasm does not play a significant role. We propose that this gene be designated Bentazon tolerance and symbolized Bzt. Chemical name used: 3-(1-methylethyl)-(1H)-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide (bentazon).

Full access

Howard F. Harrison Jr. and Mark W. Farnham

Clomazone herbicide is registered for cabbage (Brassica oleracea Capitata group) in the United States but not for other crop groups within the species. Greenhouse and field experiments were designed to compare the tolerance of broccoli (B. oleracea Italica group) and cabbage cultivars to clomazone to assess its potential for weed management in broccoli. Four broccoli cultivars (Captain, Green Magic, Legacy, and Patron) and four cabbage cultivars (Bravo, SC 100, Stone Head, and Vantage Point) were evaluated in all experiments. In a greenhouse experiment where seedlings were transplanted into potting medium containing clomazone at 0, 1.0, 2.0, and 4.0 parts per million (ppm), ‘Bravo’ cabbage was most susceptible. Its injury ratings and shoot weight reduction at 1.0 ppm were similar to ratings and shoot weight reduction for the other cabbage cultivars at 4.0 ppm. Among the broccoli cultivars, Patron was highly susceptible, exhibiting injury and shoot weight reduction similar to Bravo. Green Magic was the most tolerant broccoli cultivar, and it exhibited injury and growth reduction similar to the tolerant cabbage cultivars. In a field experiment where clomazone was applied pretransplanting at 0.25, 0.5, and 1.0 lb/acre, 0.25 lb/acre caused moderate chlorosis to the susceptible cultivars, Bravo and Patron. At 0.50 and 1.0 lb/acre, most cultivars exhibited chlorosis at 2 weeks after transplanting (WAT); however, tolerant cultivars recovered and injury was often not observed at 6 WAT. At 1.0 lb/acre, chlorosis persisted until maturity on ‘Bravo’ and ‘Patron’ foliage. Clomazone did not reduce mean broccoli head weight or the percentage of plants producing market-size heads. Mean cabbage head weight for ‘Bravo’ was reduced by clomazone at 1.0 lb/acre. This study indicates that the variability in clomazone tolerance among broccoli cultivars may be similar to that among cabbage cultivars and suggests that the herbicide can be used safely on tolerant broccoli cultivars at rates that are recommended for cabbage.

Free access

Howard F. Harrison Jr, Amnon Levi and C.S. Kousik

Watermelon [Citrullus lanatus v. lanatus (Thunb.) Matsum & Nakai] seed exudates are inhibitory to germination and seedling growth of other plant species. A miniature bioassay experiment that measured proso millet (Panicum miliaceum L.) radicle growth was used to assess the inhibition caused by seed exudates of 125 genotypes of watermelon and related Citrullus species. Exudates of most genotypes were not inhibitory; however, exudates of 53 accessions reduced radicle growth in comparison with the control. In subsequent proso millet radicle growth experiments, genotypes were found to vary in inhibitory potential, and concentration response curves generated using filtered, pasteurized exudates were different among genotypes. Filter-sterilized seed exudates of Citrullus accessions also varied in the level of inhibition in a bioassay that measured their effect on sporangia formation by the watermelon pathogen, Phytophthora capsici. These observations suggest that constituents in Citrullus seed exudates affect organisms in the spermosphere and that the inhibitory potential of seed exudates varies among genotypes. Differences in concentration response curves in the millet bioassay and differences in the relative inhibition of genotypes in the millet and fungus bioassays indicate that the inhibitory constituents in seed exudates vary among genotypes.

Free access

Howard F. Harrison, Joseph K. Peterson and Maurice E. Snook

Free access

Howard F. Harrison, Joseph K. Peterson and Maurice E. Snook

Bioasssay-guided investigation of constituents possibly contributing to the allelopathic potential of sweetpotato led to the isolation of a nonpolar seed germination inhibitor in sweetpotato (Ipomoea batatas L.) roots. Mass spectral data supported by HPLC s pectroscopic analyses and data obtained from hydrolysis products revealed the presence of three monogalactosyl-diglycerides (MGDGs) (galactosyl-di-linoleneoyl glyceride, galactosyl-linoleneoyl-linoleoyl glyceride, and galactosyl-di-linoleoyl glyceride) in storage roots. The compounds inhibited proso millet germination, and at 100 ppm inhibition was about 90%. MGDG with fully saturated fatty acids (galactosyl-distearoyl glyceride) was not inhibitory in the bioassay. An efficient method for quantitation of individual MGDGs was developed, and the contents of each compound in the storage root tissues of 12 genetically diverse cultivars and breeding lines were determined. On a dry weight basis, total MGDG contents ranged between 107 and 452 μg/g in the periderm, 298 and 807 μg/g in the cortex, and 296 and 755 μg/g in the stele. Also, large differences in the ratios of the three compounds between clones and between tissues within a clone were noted. The differences between clones indicate that manipulating total content and ratios of MGDGs through plant breeding is feasible.

Free access

Howard F. Harrison Jr., Chandrasekar S. Kousik and Amnon Levi

Clomazone herbicide is registered for use in watermelon; however, crop tolerance is marginal, and the recommended use rates (0.17 to 0.28 kg a.i./ha) are lower for watermelon than for other crops. In a greenhouse germplasm evaluation experiment including 56 germplasm accessions and watermelon cultivars, three Citrullus lanatus var. citroides PI accessions (PI 482324, PI 5003540, and PI 532624) were not injured by clomazone, whereas most of the other accessions and cultivars were moderately or severely injured. A greenhouse concentration response experiment demonstrated that the clomazone concentration required to cause moderate injury to the tolerant ‘PI 500354’ was approximately three times the concentration required to cause similar injury to the susceptible citroides accession ‘PI 244017’, and the concentration required to cause 50% shoot biomass reduction was approximately five times greater for ‘PI 500354’ than for ‘Charleston Gray’ watermelon. Subsequent field experiments demonstrated that two tolerant accessions (‘PI 500354’ and ‘PI 482324’) were injured less initially by clomazone and recovered more rapidly from clomazone injury than two susceptible accessions (‘PI 244017’ and ‘PI 271773’) and two watermelon cultivars (‘Charleston Gray’ and ‘Crimson Sweet’). Tolerant germplasm accessions like ‘PI 482324’ and ‘PI 500354’ may be useful as sources of clomazone tolerance in watermelon breeding. Chemical name used: clomazone {2-[(2-chlorophenyl)methyl]-4,4-dimethyl-3-isoxazolidinone}.

Free access

Howard F. Harrison Jr., W. Patrick Wechter and Chandrasekar S. Kousik

Watermelon [Citrullus lanatus var. lanatus (Thunb.) Matsum & Nakai] seed and root exudates inhibit germination and seedling growth of plants and growth of pathogenic fungi and bacteria. This study was conducted to determine if extractable components in the testa (seedcoat) contribute to the inhibition previously reported. Testae of eight genetically diverse Citrullus genotypes were extracted first with dichloromethane to remove less polar components and then with 70% methanol to remove more polar components. The dichloromethane extracts were not inhibitory in a Proso millet radicle growth bioassay; however, they were highly inhibitory to the growth of the fruit blotch bacterial pathogen Acidovorax avenae subsp. citrulli (Aac). All dichloromethane extracts were highly inhibitory to Aac except those from a watermelon breeding line, 406-1-x 7 and a C. lanatus var. citroides accession, PI 500354. The more polar components extracted in 70% methanol inhibited Proso millet radicle and Aac growth and Phytophthora capsici zoospore germination. The greatest inhibition of radicle growth was found with 70% methanol extracts from two watermelon relatives, C. lanatus var. citroides [Bailey (Mansf.)] (PI 532738) and C. colocynthis [(L.) Scrad.] (PI 432337). They reduced radicle elongation by 90% at an extract concentration of 250 mg of tissue extracted per mL water. The 70% methanol extracts of several genotypes partially inhibited Aac colony formation, but the C. lanatus var. citroides accession, PI 532738, was the only genotype with 70% methanol extracts that completely inhibited the bacterium at 100 mg·mL−1. The 70% methanol extracts of Charleston Gray, 406-1-x 7, PI 500354, PI 532738, and PI 167125 were highly inhibitory in a Phytophthora capsici zoospore germination bioassay. These results indicate that the testae of Citrullus genotypes contain at least two compounds that are inhibitory to microorganisms and plants in bioassay, and the amount of inhibition caused by the extracts varied among Citrullus genotypes.