Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: Hong-yan Liu x
Clear All Modify Search
Restricted access

Bo-Ling Liu, Zhi-Bin Fan, Ze-Qun Liu, Xun-Hong Qiu and Yan-Hong Jiang

Salvia miltiorrhiza (commonly known in China as Danshen) is widely used in traditional Chinese medicine, and it is applied in the treatment of many diseases, particularly cardiovascular disease. Commercial propagation of Danshen is carried out either through seed germination or in vitro regeneration (micropropagation). However, it is not clear if the different propagation methods affect the chemical properties of the derived plants. In the present study, we first established a highly efficient tissue culture system for Danshen propagation. The addition of 1.0 mg·L−1 6-benzyladenine (BA) and 0.1 mg·L−1 α-naphthalene acetic acid (NAA) to Murashige and Skoog (MS) medium was optimal for inducing adventitious shoots; the highest rate of rooting was recorded on MS medium with 0.2 mg·L−1 NAA, on which the survival rate of transplanted plantlets was 95%. Next, we assessed antioxidant properties in the different tissues of plants of the same age, derived from micropropagation or seed germination, and measured tanshinone, total phenol, and total flavonoid contents. Our results showed that tissues of micropropagated plantlets had higher antioxidant activities than tissues of seed-derived plantlets; the micropropagated plantlets also had higher tanshinone contents in their roots. Thus, a rapid and efficient micropropagation system was established for Danshen, and it can be used for cultivating this plant to obtain therapeutic compounds.

Restricted access

Aerdake Kuwantai, Yu-jia Liu, Zong-zhe Wan, Hong-yan Liu and Ling Wang

Restricted access

Meiling Yang, Fang Li, Hong Long, Weiwei Yu, Xiuna Yan, Bin Liu, Yunxiu Zhang, Guorong Yan and Wenqin Song

As a wild apple species native to central Asia, Malus sieversii (Ledeb.) Roem. is distributed in a wide region covering most of the Tienshan Mountains. Malus sieversii is a useful genetic pool for apple breeding since rich with diversity. In this paper, we first describe the species range of this endangered species. We then describe an in situ reserve that has been established. We also investigated some reproductive characteristics of M. sieversii including pollen germination, seed dormancy, and seed viability. Both stratification and seedcoat removal efficiently released seed dormancy and accelerated seed germination. Pollen germination rate is around 60%. Our data suggest that injurious insects and human activities, rather than reproductive characters, limit the renewal of M. sieversii.

Free access

Jun Tang, Kang-Di Hu, Lan-Ying Hu, Yan-Hong Li, Yong-Sheng Liu and Hua Zhang

Hydrogen sulfide (H2S) has been shown to be a gaseous molecule in the regulation of many processes in plants such as abiotic stress tolerance, root organogenesis, stomatal movement, and postharvest fruit senescence. We studied the role of H2S in the regulation of senescence and fungal decay in fresh-cut sweetpotato (Ipomoea batatas L., cv. Xushu 18) roots. H2S donor sodium hydrosulfide (NaHS) alleviated senescence in fresh-cut sweetpotato root tissue in a dose-dependent manner with the optimal concentration of 2.0 mmol·L−1 NaHS solution. At the optimal concentration of 2.0 mmol·L−1 NaHS, H2S fumigation maintained higher levels of reducing sugar in sweetpotato fresh-cut root. H2S treatment also significantly increased the activities of guaiacol peroxidase (POD) and decreased those of polyphenol oxidase (PPO) in sweetpotato during storage. Further investigation showed that H2S treatment maintained a lower level of lipoxygenase (LOX) activity compared with water control. Consistently, the accumulation of malondialdehyde (MDA) was reduced in H2S-treated groups. Three fungal pathogens, Rhizopus nigricans, Mucor rouxianus, and Geotrichum candidum, were isolated from sweetpotato tissue infected with black rot or soft rot. H2S fumigation at 1 to 2.5 mmol·L−1 NaHS resulted in effective inhibition of the three fungi when grown on medium. When the three fungi were inoculated on the surface of sweetpotato slices, H2S fumigation greatly reduced the percentage of fungal infection. In conclusion, these data suggest that H2S effectively alleviated the senescence and decay in sweetpotato slices and might be developed into a novel fungicide for reduction of black rot or soft rot in sweetpotato.

Restricted access

Jie Zhang, Hong-yan Liu, Xin-yu Qi, Ya-nan Li and Ling Wang

Free access

Ni Jia, Qing-Yan Shu, Dan-Hua Wang, Liang-Sheng Wang, Zheng-An Liu, Hong-Xu Ren, Yan-Jun Xu, Dai-Ke Tian and Kenneth Michael Tilt

Petal anthocyanins were systematically identified and characterized by high-performance liquid chromatography (HPLC)–electrospray ionization–mass spectrometry (MS) coupled with diode array detection among nine wild herbaceous peony (Paeonia L.) species (15 accessions). Individual anthocyanins were identified according to the HPLC retention time, elution order, MS fragmentation patterns, and by comparison with authentic standards and published data. Six main anthocyanins, including peonidin-3,5-di-O-glucoside, peonidin-3-O-glucoside-5-O-arabinoside (Pn3G5Ara), peonidin-3-O-glucoside, pelargonidin-3,5-di-O-glucoside, cyanidin-3,5-di-O-glucoside, and cyanidin-3-O-glucoside (Cy3G), were detected. In addition to the well-known major anthocyanins, some minor anthocyanins were identified in herbaceous peony species for the first time. Detection of the unique anthocyanins cyanidin-3-O-glucoside-5-O-galactoside and pelargonidin-3-O-glucoside-5-O-galactoside in both Paeonia anomala L. and P. anomala ssp. veitchii (Lynch) D.Y. Hong & K.Y. Pan indicated these two species should belong to the same taxon. Pn3G5Ara was found only in European wild species and subspecies suggesting different metabolic pathways between European and Chinese accessions. Anthocyanins conjugated with galactose and arabinose were observed in the genus Paeonia for the first time. The North American species, Paeonia tenuifolia L., had high Cy3G content in flower petals. This anthocyanin composition is distinct from the anthocyanin composition in Asian and European species and possibly is responsible for the vivid red coloration in flowers.

Free access

Shuai-Ping Gao, Kang-Di Hu, Lan-Ying Hu, Yan-Hong Li, Yi Han, Hui-Li Wang, Kai Lv, Yong-Sheng Liu and Hua Zhang

Hydrogen sulfide (H2S) was recently recognized as an endogenous gaseous molecule involved in seed germination, root organogenesis, abiotic stress tolerance, guard cell movement, and delay of senescence in plants. In the present study, we show that H2S participates in the regulation of postharvest ripening and senescence in fresh-cut kiwifruit, Actinidia deliciosa. Fumigation of fresh-cut kiwifruit with the H2S donor sodium hydrosulfide (NaHS) solution prolonged kiwifruit storage time and alleviated senescence and tissue softening in a dose-dependent manner at an optimal concentration of 1.0 mmol·L−1 NaHS. H2S treatment maintained higher levels of reducing sugars, soluble proteins, free amino acids, ascorbate, and chlorophyll and lowered carotenoid levels. H2S treatment also significantly decreased the contents of malondialdehyde (MDA), hydrogen peroxide (H2O2) and superoxide anion (O2 ) during fruit storage compared with water controls. Furthermore, the activities of guaiacol peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) were increased by H2S treatment, whereas the activity of lipoxygenase (LOX) was decreased compared with untreated controls. Taken together, these results suggest that H2S is involved in prolonging postharvest shelf life and plays an antioxidative role in fresh-cut kiwifruit.

Restricted access

Chen Chen, Meng-Ke Zhang, Kang-Di Hu, Ke-Ke Sun, Yan-Hong Li, Lan-Ying Hu, Xiao-Yan Chen, Ying Yang, Feng Yang, Jun Tang, He-Ping Liu and Hua Zhang

Aspergillus niger is a common pathogenic fungus causing postharvest rot of fruit and vegetable, whereas the knowledge on virulence factors is very limited. Superoxide dismutase [SOD (EC 1.15.1.10)] is an important metal enzyme in fungal defense against oxidative damage. Thus, we try to study whether Cu/Zn-SOD is a virulence factor in A. niger. Cu/Zn-SOD encoding gene sodC was deleted in A. niger [MA70.15 (wild type)] by homologous recombination. The deletion of sodC led to decreased SOD activity in A. niger, suggesting that sodC did contribute to full enzyme activity. ΔsodC strain showed normal mycelia growth and sporulation compared with wild type. However, sodC deletion markedly increased the cell’s sensitivity to intracellular superoxide anion generator menadione. Besides, spore germination under menadione and H2O2 stresses were significantly retarded in ΔsodC mutant compared with wild type. Further results showed that sodC deletion induced higher superoxide anion production and higher content of H2O2 and malondialdehyde (MDA) compared with wild type, supporting the role of SOD in metabolism of reactive oxygen species (ROS). Furthermore, ΔsodC mutant had a reduced virulence on chinese white pear (Pyrus bretschneideri) as lesion development by ΔsodC was significantly less than wild type. The determination of superoxide anion, H2O2, and MDA in A. niger-infected pear showed that chinese white pear infected with ΔsodC accumulated less superoxide anion, H2O2, and MDA compared with that of wild type A. niger, implying that ΔsodC induced an attenuated response in chinese white pear during fruit–pathogen interaction. Our results indicate that sodC gene contributes to the full virulence of A. niger during infection on fruit. Aspergillus niger is one of the most common species found in fungal communities. It is an important fermentation industrial strain and is also known to cause the most severe symptoms in fruit during long-term storage (Pel et al., 2007). Meanwhile, plants activate their signaling pathways to trigger defense responses to limit pathogen expansion. One of the earliest host responses after pathogen attack is oxidative burst, during which large quantities of ROS are generated by different host enzyme systems, such as glucose oxidase (Govrin and Levine, 2000). ROS such as singlet oxygen, superoxide anion, hydroxyl (OH), and H2O2 are released to hinder the advance of pathogens (Gara et al., 2003). ROS can react with and damage cellular molecules, such as DNA, protein, and lipids, which will limit fungal propagation in the host plant (Apel and Hirt, 2004).