Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Hiroshi Yakushiji x
Clear All Modify Search

Mechanisms of sugar accumulation in response to drought stress in Satsuma mandarin (Citrus unshiu Marc.) fruit were investigated. Predawn leaf water potentials averaged -0.35MPa for well-watered, -0.60 MPa for moderately drought-stressed, and -1.00 MPa for severely drought-stressed glasshouse-grown 3-year-old trees. Fruit peel turgor and fruit growth of the moderately drought-stressed trees recovered to a similar value to that of the well-watered trees. Photosynthetic rates and stomatal conductance of both moderately and severely drought-stressed trees were significantly lower than those of the well-watered plants. However, the total sugar content per fruit of moderately drought-stressed trees was the highest among the drought treatments. A 13C-labeling experiment showed that 13C distribution in fruit grown under the moderately drought-stressed condition was the highest. These findings indicate that sugar accumulation in fruit was caused by an increase in translocation of photosynthates into fruit, especially into the juice sacs, under drought stress.

Free access

The effect of water stress induced to enhance sugar accumulation in Satsuma mandarin (Citrus unshiu Marc.) fruit was investigated. Satsuma mandarin trees were subjected to water stress using mulch cultivation from late August to early December. In mulch treatment, soil was covered with double-layered plastic sheets that prevented rainfall from permeating the soil, but allowed water from soil to evaporate. The water status of soil, fine roots, pericarps, and juice vesicles was determined using the isopiestic psychrometer. As the severity of water stress increased, both water potential and osmotic potential of fine roots and pericarps significantly decreased in plants grown under mulch cultivation compared to well-watered trees. Although water potential and osmotic potential decreased, turgor of both roots and pericarps of the water stressed trees did not decrease under water stress conditions. Because turgor was maintained, osmoregulation occurred in Satsuma mandarin trees in response to water stress. The osmotic potential of juice vesicles in water-stressed fruit gradually decreased, and sugars accumulated in vesicle cells. Concentrations of sucrose, fructose, and glucose increased in fruit sap under water stress, and the acidity in the fruit juice increased. Furthermore, the total sugar content per fruit of water stressed trees was significantly higher than in fruit of well-watered trees. These results suggest that sugar accumulation in Satsuma mandarin fruit was not caused by dehydration under water stress but rather that sugars were accumulated by active osmoregulation in response to water stress. When sugar components in osmoregulated fruit were analyzed, it was found that monosaccharides, i.e., glucose and fructose, were largely responsible for active osmoregulation in fruit under water stress conditions.

Free access

We investigated sugar (solute) accumulation in watermelon [Citrullus lanatus (Thunb.) Matsum. et Nakai] fruits at the immature stage. Watermelon plants were grown hydroponically in a nutrient solution with an electric conductivity (EC) of 1.2 Sā‹…māˆ’1 (EC 1.2 regime); then, fruits were harvested 21 days after anthesis. The flesh of each fruit was divided into seven different parts to measure the sugar concentration and water status. The results indicated that the sugar concentration was higher in the center of the fruit flesh than in the other parts, such as around the pericarp. Moreover, the lowest osmotic potential was observed in the center of the fruit flesh, indicating solute accumulation. Concurrently, when the transport of photosynthates in the fruit was investigated using the 13CO2 isotope, the active solute accumulation in the center of the fruit flesh was observed, supporting the observed sugar accumulation in this part. Consequently, this active solute accumulation and distribution occurred in the center of the watermelon fruit, as demonstrated by the data of osmotic pressure and sugar concentration and supported by the observed active photosynthate accumulation. Additionally, we investigated these measurements by increasing the nutrient solution concentration 14 days after anthesis. As a result, fruit growth was slightly inhibited using the EC 3.0 regime, and 13C translocation was also inhibited in the fruit, especially in its center. Even though the sugar concentration and osmotic pressure of the fruit flesh were not clearly affected by high nutrient solution concentrations, the cell turgor of the central flesh of the fruit grown using the EC 2.0 and 3.0 regimes was lower than that of the fruit grown using the EC 1.2 regime. Treatments with higher nutrient concentrations might have negative effects on immature watermelon fruits.

Open Access