Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Heather D. Toler x
Clear All Modify Search

Rapid cycling Brassica rapa L. were grown for 7 days in the presence of 11 levels of zinc (Zn) in hydroponic solution culture and evaluated for changes in Zn and glucosinolate (GS) content. Zinc levels were 0.05, 1, 5, 10, 25, 50, 75, 100, 125, 150, and 200 mg·L-1 Zn. Plants grown in solutions with ≥50 mg·L-1 Zn displayed severe Zn toxicity symptoms, grew little, or died and were not subsequently evaluated for GS content. Shoot Zn concentrations increased linearly with increasing Zn treatment levels. Gluconapin, which accounted for nearly 90% of the aliphatic GSs present, was the only aliphatic GS influenced by Zn, and decreased linearly with increasing Zn levels. Accumulation of glucobrassicin and 4-methoxyglucosbrassicin, both indole GSs, responded with a linear increase and quadratically, respectively, to Zn fertility. An aromatic GS, gluconasturtiin, was also influenced by Zn levels in solution, and had a quadratic response to increasing Zn. This suggested that Zn fertility can influence changes in GS that may affect flavor (bitterness, etc.) or medicinal attributes associated with the GS and their breakdown products, as well as elevate the nutritional status of Zn in the leaves of Brassica.

Free access

Glucosinolates are sulfur-containing secondary plant metabolites commonly found in the family Brassicaceae. The presence of selenium in soils increases the uptake of sulfur and inhibits the production of glucosinolates in brassicaceous plants. This study was undertaken to determine the extent of selenium's impact on sulfur uptake and glucosinolate production in Brassica oleracea L. Rapid-cycling B. oleracea plants were grown hydroponically in half-strength Hoagland's nutrient solution with selenium treatments delivered as sodium selenate concentrations of 0.0, 0.5, 0.75, 1.0, and 1.5 mg·L−1. Elevated sulfur treatments of 37 mg·L−1 sulfate and 37 mg·L−1 sulfate/0.75 mg·L−1 selenate were incorporated to compare with selenium treatments. Plants were harvested and freeze-dried 1 day before anthesis. Selenium and sulfur content of plant tissue was determined by flame atomic absorption spectrophotometry and a carbon–nitrogen–sulfur analyzer. Glucosinolate content of leaf tissue was determined by high-performance liquid chromatography. Selenium and sulfur uptake in plants positively correlated with selenium concentration in the nutrient solution. The sulfur concentration of plants exposed to selenium equaled or exceeded the sulfur concentration of plants exposed to elevated sulfur. Despite higher sulfur concentrations, there occurred a statistically significant decrease in production of five of the seven glucosinolates analyzed in selenium-enriched plants. Plants that underwent elevated sulfur treatments had higher glucosinolate production than selenium-treated plants. These results suggest that selenium either upregulates or prevents the downregulation of sulfur uptake in B. oleracea. In addition, the presence of selenium within the plant appears to have a negative impact on the production of certain glucosinolates despite adequate availability of sulfur.

Free access