Search Results

You are looking at 1 - 10 of 58 items for

  • Author or Editor: Hazel Wetzstein x
Clear All Modify Search
Author:

Abstract

The Collegiate Branch Forum is an excellent means for undergraduate students to gain experience in presenting papers and to become involved in research. Students need much time and guidance at the undergraduate level. However, considering the purpose behind collegiate branch papers, I elected not to co-author their papers. This was also the case in some of the other collegiate papers in which only the student's name appears. I question whether a paper belongs in the collegiate division if several faculty names appear as co-authors. Perhaps a concensus should be made concerning the number of students allowed on a single paper and whether faculty advisors are to be co-authors. One paper given this year had seven co-authors.

Open Access

Commercial pesticide formulations of triphenyltin hydroxide, benomyl plus triphenyltin hydroxide, and phosalone completely inhibited pollen germination of pecan [Carya illinoensis Wangenh C. Koch] when incorporated in in vitro germination media at one-fourth to one times the recommended rates. Scanning electron microscopic evaluations of spray effects on receptive stigmatic surfaces showed varying degrees of injury, ranging from minor surface wrinkling with triphenyltin hydroxide to severe collapse and degeneration of stigma papillae with phosalone treatments. Controlled pollinations 1 hour after pesticide sprays resulted in an inhibition of pollen germination and tube growth. Water sprays followed by pollination resulted in normal pollen adherence, hydration, and germination. Chemical names used: methyl[1-[(butylamino)carbonyl]-1H-benzimidazol-2-yl]carbamate (benomyl); S-[(6-chloro-2-oxo-3-(2H)-benzoxazolyl)methyl] 0,0-diethyl phosphorodithioate (phosalone).

Free access

Abstract

Internal porosity, availability of internally adsorbed water, and root growth within a pine bark particle were studied. Internal pore spaces comprised about 43% to 44% of the volume of a pine bark particle. Scanning electron microscopy (SEM) of Coleus blumei Benth. and Vaccinium ashei Reade showed roots anchored on the exterior surface and developing within the bark particle. Seedling development (Raphanus sativus L.) in water-saturated pieces indicated that internally adsorbed water was available provided that roots developed within the bark particle. The quantity of available water remains to be determined.

Open Access

Abstract

Actively expanding apical meristems of geranium (Pelargonium × hortorum Bailey) growing in ambient light or in 60% shade were viewed with a scanning electron microscope at weekly intervals. Floral initiation was 37 days earlier in plants receiving ambient light and differentiation time was reduced by 7 days compared with shadegrown plants. Leaves of shade-grown plants emerged more slowly and were smaller when plants were young compared with ambient light-grown plants. Flowers of shadegrown plants were smaller and fewer in number compared with ambient-grown plants, both during differentiation and at anthesis. Shade-grown plants had 22–24 nodes at flower initiation compared with 16–18 nodes in ambient-grown plants.

Open Access

Embryogenesis in higher plants follows a standard developmental program with sequential stages of histodifferentiation, maturation (reserve deposition), and postabscission (desiccation and rapid decline in metabolic activity). In this study, morphological, physiological and anatomical characteristics were integrated to demarcate the developmental stages of pecan embryos. Fruit were collected, morphological characteristics were recorded, fresh and dry weights, and water content of embryos were determined, and embryos were prepared for microscopic study. The procedures used here can be a useful guide for characterizing embryo development in pecan and related species.

Free access

Although somatic embryogenesis in vitro has been carried out successfully in a number of plants, a limiting factor in many somatic embryogenic systems is that plantlet regeneration is not obtainable or restricted to low frequencies. We have developed a repetitive, high frequency somatic embryogenic system in pecan (Carya illinoensis) and have identified effective treatments for improved somatic embryo conversion. A 6 to 10 week cold treatment followed by a 5 day desiccation, promoted enhanced root germination and extension, and epicotyl elongation. Light and transmission electron microscopic evaluations of somatic embryo cotyledon development will be presented and related to conversion enhancing treatments and their possible roles in embryo maturation.

Free access

Although somatic embryogenesis in vitro has been carried out successfully in a number of plants, a limiting factor in many somatic embryogenic systems is that plantlet regeneration is not obtainable or restricted to low frequencies. We have developed a repetitive, high frequency somatic embryogenic system in pecan (Carya illinoensis) and have identified effective treatments for improved somatic embryo conversion. A 6 to 10 week cold treatment followed by a 5 day desiccation, promoted enhanced root germination and extension, and epicotyl elongation. Light and transmission electron microscopic evaluations of somatic embryo cotyledon development will be presented and related to conversion enhancing treatments and their possible roles in embryo maturation.

Free access
Authors: and

Plantlets were recovered from axillary bud cultures of muscadine grape (Vitis rotundifolia, `Summit'). Nodal segments 0.5 to 1.0 cm long were cultured in Murashige and Skoog (MS) basal medium supplemented with 5, 10, 20, or 40 μm BA. Best total shoot production was obtained with 10 μm BA; with higher BA levels, shoots were unexpanded and exhibited high mortalities. MS medium supplemented with IBA enhanced rooting by increasing rooting percentage and number per plantlet. Shoots previously proliferated on medium with 5 μm BA rooted significantly better than those multiplied on 10 μM BA. Shoot vigor during rooting was greater in shoots proliferated on 5 vs. 10 μm BA. Root development was not significantly affected by liquid vs. agar-solidifted medium or shoot length. Chemical names used: N-(phenylmethyl) -1H-purin-6-amine (BA), 1H-indole-3-butyric acid (IBA).

Free access

Abstract

Early pollen-stigma responses were observed microscopically in controlled pollinations of pecan [Carya illinoensis (Wangenh) C. Koch]. Receptive stigmatic surfaces have rounded, basally attached projecting papillae with an irregularly patterned, noncopious exudate. Polarly flattened pollen, characteristic of grains at anthesis, becomes rounded and hydrated by 1 hr after pollination. Pollen tube emergence is visible within 3 hr of pollination, and extensive pollen tube growth on the stigma is apparent after 8 to 12 hr. Tube growth generally occurs along the stigmatic surface and between adjacent cells. Stigmatic cells collapse after pollen hydration and germination, with collapse extensive 24 hr after pollination. By 48 hr after pollination, stigmatic cells are flattened, and pollen grains and emerged pollen tubes have contents discharged with a similar collapse.

Open Access

Abstract

The acclimatization or hardening-off of in vitro-cultured sweetgum (Liquidambar styraciflua L.) plantlets was studied using scanning electron microscopy. Comparisons were made among leaves of plantlets differentiated in culture, plantlets acclimatized after transfer from in vitro conditions, greenhouse seedlings, and mature trees. Leaves of plantlets directly from tissue culture had superficial, circular stomata and epidermal cells with irregular, sinuous undulations in the anticlinal walls. Leaves from acclimatized plantlets had ellipsoid, depressed stomata and irregularly shaped epidermal cells. Seedling and field-grown leaves had depressed, ellipsoid stomata and well-defined isodiametric epidermal cells. Stomata in all cases were confined to the abaxial surface, with densities significantly greater in leaves of in vitro plantlets than in acclimatized plantlets or greenhouse-grown plants. Epicuticular wax was generally smooth and absent of waxy outgrowths in all conditions.

Open Access