Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Hassan Salehi x
Clear All Modify Search
Restricted access

Mozhgan Zangeneh and Hassan Salehi

There are many species of Narcissus in diverse areas of the world in natural or cultured form and there is no complete information about their genetic status, especially the relatedness within a species. Thus, the current study applied intersimple sequence repeat (ISSR) markers to estimate the genetic diversity of 31 accessions, including 30 accessions of Narcissus tazetta, collected from 16 regions of Iran and one known exotic narcissus species that is being cultivated in Iran, and identification of tolerant genotypes for deficit irrigation by evaluation of their morpho-physiological characteristics. Seventeen anchored ISSR primers from a total of 19 tested ISSR primer pairs were used and produced 206 bands of different sizes. The average percentage of polymorphic bands was 96.02%. The maximum resolving power (8.32), polymorphic information content average (0.44), and marker index values (5.61) were observed for the primers of 811, 828, and 811, respectively. The unweighted pair group method with arithmetic mean based on Jaccard’s coefficients was used to assign the genotypes to one of two major clusters. Both clusters were divided into two subclusters, with single and double flowers separating into subgroups. The results showed that ISSR markers can be used as a diagnostic tool to evaluate genetic variation in Narcissus genotypes and reveal their relationships. The results of screening study identified drought-tolerant accessions. They were clustered into two major groups: drought-tolerant accessions with single flowers and drought-sensitive accessions having double and semidouble flowers. The findings presented can be used in breeding programs for different Narcissus genotypes.

Free access

Hassan Salehi and Morteza Khosh-Khui

Turfgrass seeds can be sown individually, in mixes, or overseeded to provide green color and uniform surfaces in all the seasons. This investigation was conducted to compare different turfgrass species and their seed mixtures. In this research, the turfgrasses—perennial ryegrass (Lolium perenne L. `Barball'), kentucky bluegrass (Poa pratensis L. `Merion'), common bermudagrass (Cynodon dactylon [L.] Pers.), and strong creeping red fescue (Festuca rubra L. var. rubra `Shadow')—in monoculture or in mixtures of 1:1 (by weight) and a 1:1:1:1 (by weight) and two sport turfgrasses—BAR 11 (Barenbrug Co.) and MM (Mommersteeg Co.)—were used. The seeds were sown in March and October (spring and fall sowing) in 1998 and 1999. The experiments were conducted in a split-split block design with year as main plot, sowing season as subplot, and turfgrass types as subsubplot. The turfgrasses were compared by measuring visual quality, chlorophyll index after winter and summer, rooting depth, verdure and/or root fresh and dry weight, tiller density, and clippings fresh and dry weight. Fall sowing was superior to spring sowing and resulted in greater root growth, clipping yield, and chlorophyll content. Poa+Cynodon seed mixture was the best treatment and had high tiller density, root growth, and chlorophyll content. Lolium and Festuca monocultures, and Poa+Festuca and Cynodon+Festuca seed mixtures were not suitable with regard to low tiller density, sensitivity to high temperatures, low root growth, and low tiller density, respectively. The cool-warm-season seed mixture (Poa+Cynodon) can be used alternatively in overseeding programs in the areas with soil and environmental conditions similar to this research site.

Free access

Hassan Salehi, Zahra Seddighi, Alexandra N. Kravchenko and Mariam B. Sticklen

Bermudagrass (Cynodon L.C. Rich.) is grown on more than 4 million ha in the southern United States. The black cutworm (Agrotis ipsilon Hufnagel) is the most commonly encountered pest of bermudagrass, especially on golf course greens. Developing insect-resistant cultivars is a very desirable substitute, both environmentally and economically, to using current synthetic pesticides. Here we report, for the first time, Agrobacterium-mediated transformation of `Arizona Common' common bermudagrass [Cynodon dactylon (L.) Pers.] with the Bacillus thuringiensis Berliner cry1Ac gene encoding an endotoxin active against black cutworm. Mature seeds were used for producing embryogenic callus, and calli were transformed with a plasmid containing a synthetic cry1Ac and the kanamycin resistance (nptII) genes. Putative transgenic calli and plantlets were selected on media containing 100 and 50 mg·L-1 G418, respectively. RNA-blot analysis of PCR-positive lines revealed the expression of the cry1Ac transgene in three out of five putative transgenic lines. The larvae fed on transgenic plant leaves experienced highly significant (over 80%) mortality.