Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Hang Liu x
Clear All Modify Search
Free access

Jeremy S. Cowan, Arnold M. Saxton, Hang Liu, Karen K. Leonas, Debra Inglis and Carol A. Miles

The functionality of biodegradable mulch can be evaluated in agricultural field settings by visually assessing mulch intactness over time (a measure of deterioration), but it is unclear if mulch deterioration is indicative of mulch degradation as measured by mechanical properties (like breaking force and elongation). This 3-year study (2010–12) examined mulch percent visual deterioration (PVD) during the summer growing season in open-field and high tunnel production systems, and compared these to mulch mechanical properties at mulch installation (12–30 May), midseason (22 July–9 Aug.), and season end (6–25 Oct.), to determine if the field-based measures reliably predict degradation as revealed by changes in mulch mechanical properties. Four different types of biodegradable mulches [two plastic film mulches marketed as biodegradable (BioAgri and BioTelo); one fully biodegradable paper mulch (WeedGuardPlus); and, one experimental spunbonded plastic mulch designed to biodegrade (SBPLA)] were evaluated against a standard nonbiodegradable polyethylene (PE) mulch where tomato (Solanum lycopersicum L. cv. Celebrity) was planted as the model crop. Each year for the 3 years, PVD increased earlier for WeedGuardPlus than the other mulches in both the high tunnel and open field, and WeedGuardPlus had the greatest PVD in both high tunnels and the open field (6% and 48%, respectively). Mechanical strength of WeedGuardPlus also declined by the end of the season both in the high tunnel (up to 46% reduction) and in the open field (up to 81% reduction). PVD of BioAgri and BioTelo reached a maximum of 3% in the high tunnel and 28% in the open field by the end of the season. Mechanical strength of BioAgri and BioTelo did not change over the course of the season in either the open field or high tunnel, even though the ability of these mulches to elongate or stretch declined 89% in the open field and 82% in the high tunnel. SBPLA and PE mulches did not show a change in PVD or mechanical properties in either the high tunnel or the open field. Overall, PVD was three to six times greater by midseason in the open field than in the high tunnels. Although there were significant relationships between visual assessments and various mechanical properties for each mulch except SBPLA, the relationships differed for each mulch when evaluated separately and had coefficients of determination (R 2) below 30%. Furthermore, PVD overestimated mechanical deterioration of BioAgri and BioTelo. Results of this study indicate that mulch visual assessments may reflect general trends in changes in certain mechanical properties of the mulch; however, visual assessment and mechanical properties provide different information on deterioration. Each should be used as needed, but not as a substitute for each other.

Restricted access

Yanmei Zhang, Xuelin Shen, Xiaoqin Sun, Jia Liu, Yifeng Xia, Xin Zou and Yueyu Hang

Water chestnut (Trapa natans L.) is a group of annual, floating-leaved aquatic plants that serves as food and medical resources in many countries. However, the molecular method for distinguishing different T. natans L. resources is lacking. In this study, we detected genetic diversity of several chloroplast and nuclear genic or intergenic sequences in four varieties of T. natans and one wild type of Trapa incisa Siebold & Zuccarini to evaluate their potential as molecular markers. Our data revealed that the three chloroplast fragments (rbcL, matK, and pbsA-trnH) show no sequence difference among all tested samples. Only one nucleotide substitution is detected for the nuclear ribosomal internal transcribed spacer (ITS) in the T. natans variety Shuihongling. Four nucleotide substitutions are detected for the nuclear carotenoid isomerase (CRTISO) gene in the variety Hongxiuxie. In contrast, a total of 29 polymorphic sites are detected for a Toll and interleukin-1 receptor-nucleotide binding site–leucine rich repeat (TNL) gene in the five samples, among which six are nucleotide substitutions and the rest are insertions/deletions. The five samples could be fully distinguished from each other based on the TNL gene. To specifically authenticate ‘Heshangling’, 33 randomly amplified polymorphic DNA (RAPD) markers were adopted to amplify genomic sequences from the five samples. A pair of sequence characterized amplified region (SCAR) primers were designed based on the results of RAPD markers, which could specifically amplify one target band from all eight individuals of ‘Heshangling’, but none from any individuals of other T. natans varieties or one T. incisa. Taken together, a TNL sequence was provided in this study to distinguish four T. natans varieties and one T. incisa. Furthermore, a RAPD-SCAR marker was developed for efficient authentication of ‘Heshangling’.