Search Results
Green light penetrates deeper into the plant canopy because of its high transmittance and reflectance, and may potentially increase light interception and whole-canopy photosynthesis, whereas red and blue light is absorbed primarily by upper leaves. Moreover, green light induces shade avoidance responses and regulates secondary metabolism in plants. In this study, we investigated the effects of substituting partial red and/or blue light with green light on plant growth and development in basil (Ocimum basilicum) ‘Improved Genovese Compact’ (green) and ‘Red Rubin’ (purple) plants. There were four treatments: one combined red and blue (R&B) light treatment, R76B24 [the proportion of red (R) and blue (B) light was 76% and 24%, respectively]; and three green (G) light treatments—R44B24G32, R74B16G10, and R42B13G45—with green light proportions of 32%, 10%, and 45%, respectively. The experiment was conducted in a growth room and the photosynthetic photon flux density (PPFD) of all treatments was set at 220 μmol·m−2·s−1 with a 16-h photoperiod. Plants were subirrigated as needed using a nutrient solution with an electrical conductivity (EC) of 2.0 dS·m−1 and a pH of 6.0. The net photosynthetic rate (Pn) in lower leaves was unaffected by green light treatments in green basil plants, whereas in purple basil plants it increased by 59% and 45% under treatments R44B24G32 and R74B16G10, respectively, compared with the combined R&B light. In green basil plants, treatments R44B24G32 and R42B13G45 induced stem elongation, but green light treatments showed no effects on petiole elongation, leaf expansion, leaf thickness, or plant yield. In purple basil plants, treatments R44B24G32 and R42B13G45 induced stem elongation and decreased leaf thickness and plant yield, but only the R42B13G45 treatment induced petiole elongation, and green light treatments showed no effects on leaf expansion. Concentrations of anthocyanin, phenolics, and flavonoids, and antioxidant capacity in green basil leaves showed no differences between treatments R76B24 and R44B24G32, but decreased under treatments R74B16G10 and R42B13G45. Concentrations of phenolics and flavonoids, and antioxidant capacity in purple basil leaves showed no differences between treatments R76B24 and R74B16G10, but decreased under treatments R44B24G32 and R42B13G45. Combining plant yield, nutritional values, and the working environment for growers, a white light with low green light proportion (≈10%) is recommended for basil production in a controlled environment.
Understanding the responses of plant growth and secondary metabolite synthesis to different light wavelengths is important for optimizing lighting conditions for vegetable production in indoor vertical farms. Basil (Ocimum basilicum) ‘Improved Genovese Compact’ (green leaf) and ‘Red Rubin’ (purple leaf), green mustard ‘Amara’ (Brassica carinata), red mustard ‘Red Giant’ (Brassica juncea), green kale ‘Siberian’ (Brassica napus var. pabularia), and red kale ‘Scarlet’ (Brassica oleracea), which are high-value and multifunctional culinary herbs and leafy greens, were used to characterize the effects of red (R), blue (B), and green (G) wavelengths on plant photosynthesis, morphology, biomass production, and secondary metabolites accumulation. Light quality treatments consisted of three R and B light combinations, R88B12 (the proportions of R and B wavelengths were 88% and 12%, respectively), R76B24, and R51B49, and two white light combinations, R44B12G44 (the proportions of R, B, and G wavelengths were 44%, 12%, and 44%, respectively) and R35B24G41. Experiments were conducted in a walk-in growth room with a photosynthetic photon flux density set at 224 μmol·m−2·s−1 and a 16-hour photoperiod. Results indicated that the net photosynthesis in purple basil and green kale were positively correlated with B proportions (BP), and that higher BP increased the relative chlorophyll concentration in purple basil and red kale. In contrast, higher BP suppressed stem elongation and leaf expansion and reduced shoot biomass in all tested species except red mustard. Higher BP increased phytochemical concentrations but decreased the total amounts of phytochemicals per plant. For all basil and brassica (Brassica sp.) cultivars, the inclusion of G wavelengths decreased shoot biomass compared with that of plants grown under R and B light combinations with similar BP. Inclusion of G wavelengths stimulated stem elongation in green basil and green mustard under 12% BP; whereas it suppressed stem elongation in purple basil, green kale, red kale, and green mustard under 24% BP. The effects on phytochemical accumulation were species-specific for the inclusion of G wavelengths. Considering biomass production, nutritional values, and working environment for growers, a white light with lower BP and G proportions is recommended for culinary herbs and Brassica leafy greens production at vertical farms.
Hydrangeas are popular landscape plants that are widely grown in many parts of the world. The objective of this study was to evaluate the salinity tolerance of three novel Dichroa ×hydrangea hybrids [Dichroa febrifuga ‘Yamaguchi Hardy’ × Hydrangea macrophylla ‘Hamburg’ (YH × Hamburg), Dichroa febrifuga ‘Yellow Wings’ ×Hydrangea macrophylla ‘Nigra’ (YW × Nigra), and Dichroa febrifuga ‘Yellow Wings’ ×Hydrangea macrophylla ‘Oakhill’ (YW × Oakhill)]. A 52-day greenhouse study was conducted by irrigating container-grown plants with nutrient solution at an electrical conductivity (EC) of 1.1 dS·m−1 (control) or saline solution at an EC of 5.0 dS·m−1 (EC 5) or 10.0 dS·m−1 (EC 10). At harvest, YH × Hamburg and YW × Nigra in EC 5 and EC 10 still exhibited good quality with average visual scores greater than 4.1 (0 = dead; 5 = excellent). For YW × Oakhill, moderate foliar salt damage was observed with an average visual score of 2.9 in EC 5 and 2.2 in EC 10. Compared with control, the shoot dry weight of YH × Hamburg, YW × Nigra, and YW × Oakhill in EC 5 reduced by 35%, 35%, and 55%, respectively, whereas that in EC 10 decreased by 58%, 58%, and 67%, respectively. Elevated salinity also decreased plant height, leaf area, and leaf greenness [Soil Plant Analysis Development (SPAD) readings]; chlorophyll fluorescence (Fv/Fm); performance index (PI); and net photosynthetic rate (Pn). All these responses might result from excess accumulation of sodium (Na+) and chloride (Cl−) ions in hydrangea leaves. In this study, compared with control, leaf Na+ concentration of YH × Hamburg, YW × Nigra, and YW × Oakhill increased 11, 36, and 14 times, respectively, in EC 5, and 31, 53, and 18 times, respectively, in EC 10. Compared with control, leaf Cl− concentration increased 4, 9, and 7 times in EC 5, and 10, 11, and 8 times in EC 10 for YH × Hamburg, YW × Nigra, and YW × Oakhill, respectively. Leaf nitrogen (N), phosphorous (P), potassium (K+), and iron (Fe3+) concentrations decreased at elevated salinity levels but did not cause any nutrient deficiency. In summary, the three Dichroa ×hydrangea hybrids exhibited different salinity tolerance: YH × Hamburg and YW × Nigra were more tolerant than YW × Oakhill. Salt-tolerant hydrangea hybrids should be chosen for landscape use if soil and/or irrigation water are salty.
Consumption of basil (Ocimum basilicum) has been increasing worldwide in recent years because of its unique aromatic flavor and relatively high concentration of phenolics. To achieve a stable and reliable supply of basil, more growers are turning to indoor controlled-environment production with artificial lighting due to its high environmental controllability and sustainability. However, electricity cost for lighting is a major limiting factor to the commercial application of indoor vertical farming, and little information is available on the minimum light requirement to produce uniform and high-quality sweet basil. To determine the optimal daily light integral (DLI) for sweet basil production in indoor vertical farming, this study investigated the effects of five DLIs, namely, 9.3, 11.5, 12.9, 16.5, and 17.8 mol·m−2·d−1 on basil growth and quality. ‘Improved Genovese Compact’ sweet basil was treated with five DLIs provided by white fluorescent lamps (FLs) for 21 d after germination, and gas exchange rate, growth, yield, and nutritional quality of basil plants were measured to evaluate the effects of the different DLIs on basil growth and quality. Results indicated that basil plants grown under higher DLIs of 12.9, 16.5, or 17.8 mol·m−2·d−1 had higher net photosynthesis, transpiration, and stomatal conductance (g S), compared with those under lower DLIs of 9.3 and 11.5 mol·m−2·d−1. High DLIs resulted in lower chlorophyll (Chl) a+b concentration per leaf fresh weight (FW), higher Chl a/b ratios, and larger and thicker leaves of basil plants. The shoot FW under DLIs of 12.9, 16.5, and 17.8 mol·m−2·d−1 was 54.2%, 78.6%, and 77.9%, respectively, higher than that at a DLI of 9.3 mol·m−2·d−1. In addition, higher DLIs led to higher soluble sugar percent and dry matter percent than lower DLIs. The amounts of total anthocyanin, phenolics, and flavonoids per plant of sweet basil were also positively correlated to DLIs, and antioxidant capacity at a DLI of 17.8 mol·m−2·d−1 was 73% higher than that at a DLI of 9.3 mol·m−2·d−1. Combining the results of growth, yield, and nutritional quality of sweet basil, we suggest a DLI of 12.9 mol·m−2·d−1 for sweet basil commercial production in indoor vertical farming to minimize the energy cost while maintaining a high yield and nutritional quality.