Search Results

You are looking at 1 - 9 of 9 items for

  • Author or Editor: Haejeen Bang x
Clear All Modify Search

This experiment was conducted to determine the effects of deficit irrigation and growing season on fruit quality, carotenoid content and yield of red-, orange-, and yellow-fleshed diploid and triploid watermelon. Irrigation rates were 1.0 evapotranspiration (ET) and 0.5 ET. Diploid cultivars were Summer Flavor 710 (red), Tendersweet (orange), and Summer Gold (yellow). Triploid cultivars were Summer Sweet 5244 (red), Sunshine (orange), and Amarillo (yellow). Four-week old containerized transplants were planted in the field at TAES-Uvalde on 27 Mar. and 21 May 2003. Deficit irrigation imposed after plants were fully established reduced the individual fruit weight and size in the early planting. Soluble solids content (SSC) and firmness was not affected by irrigation rate in both plantings. SSC varied across cultivars and increased with maturity, particularly for the triploid cultivar Amarillo. In general, triploids were firmer than diploid cultivars. Total carotenoid content was not affected by irrigation during early planting. Diploid and triploid red-fleshed watermelon cultivars had significantly higher carotenoid content than orange- and yellow-fleshed cultivars. The major carotenoid was lycopene (more than 65%), followed by prolycopene (20%) and B-carotene (7%).

Free access

Fruit color and carotenoid composition are important traits in watermelon. Watermelon fruit color inheritance has revealed that several genes are involved in color determination. Carotenoids are known to have various functions in plants and animals, such as providing antioxidant activity and other health benefits for humans, and UV protection and pigmentation for plants. Differential gene activity in the carotenoid biosynthetic pathway may result in different color determination of mature fruit. Eight genes encoding enzymes involved in the pathway were isolated and their structures were characterized. While obtaining full-length cDNA of these enzymes, two single-nucleotide polymorphisms were detected in a coding region of lycopene β-cyclase (LCYB). These SNP markers showed cosegregation with red and canary yellow fruit color based on the genotyping of two segregating populations. This will lead to development of a codominant molecular marker for the selection of LCYB allele, which may allow breeders to distinguish between red and canary yellow watermelon fruit colors at the seedling stage.

Free access

Carotenoids are plant compounds that serve a variety of essential functions in the plant and have also been found to have several health-promoting activities in humans. Carotenoids found in watermelon (Citrullus lanatus) flesh are responsible for the various colors such as red, yellow and orange. Previous inheritance studies of flesh color revealed that six genes were involved in color determination. The relationship and interaction of these genes suggests that some color-determining genes may be the result of mutations on the structural genes encoding enzymes in the carotenoid biosynthesis pathway. In this study we were able to isolate and sequence six genes encoding enzymes involved in the carotenoid biosynthetic pathway, and determine their expression in different colored watermelon fruit. The cDNA was synthesized from total RNA using RACE (Rapid Amplification of cDNA ends) kit (SMART RACE cDNA Amplification Kit; Clontech, Palo Alto, Calif.). Degenerate primers were designed based on published homologous genes from other species and were used to isolate gene fragments and full-length cDNAs of phytoene synthase, phytoene desaturase, _-carotene desaturase, β-cyclase, β-carotene hydroxylase and zeaxanthin expoxidase. RT-PCR was carried out to examine any differential expression of cloned genes in white, yellow, orange and red-fleshed watermelon. All cloned enzyme-encoding genes were expressed regardless of flesh colors. These results indicate that carotenoid biosynthesis may be regulated at the post-transcriptional level. One interesting feature supports this hypothesis. In case of β-cyclase, a 229-bp leader intron was identified, and an unspliced mRNA with this leader intron existed dominantly in cDNA pool of all samples.

Free access

The effectiveness of solid matrix priming (SMP) and seed brushing was further evaluated by using an thermo-gradient table (Seed Processing, Holland) set at 10 different temperatures from 12 to 30 °C. Intact or brushed seeds of gourd (Lagenaria siceraria) were primed with Micorocel E (Celite Corp.) at 25 °C for 3 days in the mixture of 10 seed: 1 Microcel E: 3 water, by weight, and the primed seeds were dried again for long-term storage. SMP treatment significantly increased earlier seed germination at all temperatures. However, the difference in seed germination rate between intact and SMP-treated seeds was most pronounced at somewhat lower temperatures of 18-22 °C. SMP-treated seed showed about 20% final germination rate at 12 °C, whereas intact seeds did not germinate at all. Seed brushing treatment itself did not influenced the germination rate. However, brushing treatment before SMP treatment significantly increased the SMP effect. Combined use of chemicals in solution further increased the early germination. Details of various seed treatment methods will be presented.

Free access

Grafting is common in all cucurbits in Asia, and gourd (Lagenaria siceraria) is the most popular rootstock for watermelons. Since the grafting is practiced at very early stage (right after the cotyledon expansion), uniform germination of rootstocks as well as the scions is crucial for grafting efficiency. Seeds were divided into three groups; intact, dry-heat treated (75 °C for 72 h), and brushed (575 rpm for 5 min). In each group, various solid matrix priming (SMP) treatments were imposed. Microcel E was used for SMP treatment with water or chemical solutions (10 seed: 1 Microcel E: 3 water, by weight). SMP treatment promoted earlier seed germination in all tested cultivars, thus resulting in higher rate of graftable seedlings. Brushing before SMP further enhanced earlier and uniform seed germination. Dry heat treatment, which can eliminated the seed-borne Fusarium spp. and virus, significantly delayed the early germination although the final germination percentage was not influenced. The characteristics of seedlings will also be presented.

Free access

Gene identification and characterization can be utilized for the identification of respective functions and their relationship to flesh color inheritance. Phytoene synthase (PSY), which converts two molecules of GGPP into phytoene, is the first committed step of the pathway. Previous phylogenetic analysis of PSY has indicated that PSY duplication is common in Poaceae, but rare in dicots. Degenerate PCR and RACE were used for PSY cloning. Three members of PSY gene family (PSY-A, PSY-B and PSY-C) were identified. PSY-A shared higher identity with PSY-C than PSY-B. PSYC shared 96% identity with melon PSY. PSY-C also showed a high homology with tomato PSY1, even higher than PSY-A and PSY-B. It showed a similar gene expression pattern, so we propose that PSY-C is a homologue to PSY1. RT-PCR analysis indicated that PSY-B has a different transcriptional behavior from PSY-A, similar to tomato PSY2. Therefore, PSY genes appear to be under different regulatory mechanisms. Deduced protein sequence of PSY1 or PSY2 between species has higher homology than between PSY1 and PSY2 within species. Phylogenetic analysis indicated that watermelon PSY gene family is very distantly related. Watermelon and carrot PSY gene families did not appear to cluster as closely as in Poaceae or tomato. This indicates that watermelon and carrot PSY genes are not conserved as much as PSY in tomato or Poaceae. There was no particular pattern in phylogenetic relationship of dicots. Poaceae PSY genes showed a clustering into a PSY1 group and PSY2 group. PSY duplication in watermelon provides additional evidence that PSY duplication may be a common phenomenon in dicots. They are likely to be duplicated evolutionarily a long time ago, possibly even prior to the evolution of monocot and dicot divergence.

Free access

Soybean sprouts are one of the most-favored traditional vegetables around the world. The sprouts are usually consumed 7 to 10 days after sowing depending upon the growing conditions. High-quality sprouts should have less secondary roots, short and well-swollen hypocotyls in pure white color, and small cotyledons in hooked position. Cytokinins were reported to be effective in producing such sprouts by promoting sprout growth while inhibiting the excessive hypocotyl elongation and secondary root growth. Seeds of four soybean cultivars with different characteristics were soaked in water for 4 h and, 2 to 3 h after the imbibition, the seeds were soaked again in solutions of different cytokinins such as benzyladenine (BA), BA-riboside (BAR), BPA, 2iP, 2iP-riboside, 4-CPPU, and kinetin-riboside (KR) for 10 min. After the treatment, the sprouts were grown in a plastic tube (25 cm height × 10.5 cm diameter) a dark culture room with ample watering every 4 h. After 7 days of growth, uniform samples were taken from each treatment and the sprout characteristics were examined. Some cytokinins such as BA, BAR, 4-CPPU were highly effective in promoting the sprout growth (fresh weight) even though the hypocotyl length was markedly reduced. Other cytokinins such as 2iP, 2iPR, and KR had no effect on sprout growth. Hypocotyl diameter was markedly increased by BA and 4-CPPU treatment, thus resulting in short, strong and good quality sprouts. Cultivars responded differently to cytokinin treatment by showing different growth promotion depending upon the sprout parts. Injury-like symptoms, abnormal and twisted heads or cotyledons, appeared in cytokinin-treated sprouts at high concentrations and the symptoms were severe when the sprouts were grown at high temperatures. In all the cultivars tested, BAR appeared to be better than others in terms of sprout quality and growth promoting characteristics.

Free access

Dry heat treatment has been commonly used to inactivate some seed-borne pathogens in vegetable seeds. Virtually all the gourd seeds for watermelon rootstock are being treated with dry heat to inactivate cucumber green mottle mosaic virus (CGMMV, a strain of tobamovirus) and Fusarium. Seeds of five gourd and one squash cultivars were treated with dry heat (35 °C for 24 h + 50 °C for 24 h + 75 °C for 72 h) and, immediately after the dry heat treatment, the seeds (moisture content of 1% or lower) were allowed to absorb atmospheric moisture in a moisture saturated chamber until the seed moisture contents reached 2% to 8%. After the equilibrium obtained, the seeds were sealed in air-tight bags and stored for 1 day or 30 days at 20 °C. The seeds were then sown in cell trays and the emergence and seedling characteristics were evaluated. Dry heat treatment caused significant delay in emergence in all tested cultivars, but had little or no influence on the final emergence rate. Moderate to severe injury was observed in seedlings grown from dry heat-treated seeds in three out of six cultivars tested. However, little or no dry heat phytotoxicity was observed in other cultivars, thus suggesting the marked differences in cultivar susceptibility to dry heat treatment. Rapid humidification before sealing also appeared to reduce the early emergence rate in some cultivars, but had no effect on the final emergence rate in most cultivars. Storage of dry heat-treated seeds in sealed bags for 30 days before sowing was highly effective in minimizing the phytotoxicity symptoms in seedlings as compared to the seedlings grown from the seeds sown immediately after the dry heat treatment. This suggests that the reestablishment of metabolic process required for normal seed germination requires a long period after the dry heat treatment. Other characteristics associated with DH treatment will also be presented.

Free access

Two loci, C and i-C, were previously reported to determine flesh colors between canary yellow and red watermelon (Citrullus lanatus). Recently, lycopene β-cyclase (LCYB) was found as a color determinant gene for canary yellow (C) and a codominant cleaved amplified polymorphic sequence (CAPS) marker was developed to identify canary yellow and red alleles. The inhibitor of canary yellow (i-C), as reported in a previous work, was not detected in our original family derived from a cross between canary yellow and red parents. To identify additional genetic determinants such as i-C, we prepared a new family using ‘Yellow Doll’ (canary yellow) and ‘Sweet Princess’ (red), which was reported to carry the inhibitor gene i-C as parents. A new distinct class of flesh color, pale yellow, was identified in the progeny from the new canary yellow × red cross. The predominant carotenoid in canary yellow and pale yellow phenotypes was neoxanthin, followed by violaxanthin and neochrome; pale yellow contained less total carotenoids, but had more minor carotenoids compared with canary yellow. The chi-square goodness-of-fit test indicated that there are two genes involved in determining flesh color among canary yellow, pale yellow, and red, but the segregation pattern did not fit the pattern as reported for an i-C gene. When the genotype of the family ‘Yellow Doll’ × ‘Sweet Princess’ was analyzed with our LCYB CAPS marker, the flesh color of every individual perfectly cosegregated with the marker. The new pale yellow phenotype also cosegregated with the marker linked to the C allele, indicating that the recessive py phenotype (pale yellow) must carry at least one of the C alleles for expression. Therefore, we propose to designate py for a pale yellow determinant along with C as a canary yellow determinant. A homozygous recessive py gene resulted in pale yellow flesh color in the presence of a dominant C.

Free access