Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: H.G. Jones x
  • Refine by Access: All x
Clear All Modify Search
Free access

H. Melakeberhan, G.W. Bird, and A.L. Jones

This study was conducted as part of a stone fruit decline project to determine the effects of soil pH (3.9 to 7.0) on soil and plant nutrient imbalance and mortality of standard (Mazzard and Maheleb) and new (GI148-1 and GI148-8) rootstocks. Seedling mortality and soil Ca in all rootstocks and soil K and leaf Ca, K, Al, and Mn contents in all rootstocks but GI148-8 were higher at below optimum than at optimum soil pH. The nutrient imbalance suggests that the adaptation of these rootstocks to biotic and abiotic factors needs to be considered.

Free access

J.L. Garcia-Hernandez, E. Troyo-Dieguez, H. Nolasco, H.G. Jones, and A. Ortega-Rubio

The phytotoxic effects on the physiology of chili (Capsicum annum L. cv. Ancho San Luis) caused by four different insecticides were evaluated. Three commercial mixes (methyl azinfos, methyl parathion CE720, and metamidophos 600 LM), and an active ingredient alone (methamidophos) were assayed; water was used as the control. The main goal was to evaluate the insecticide effects on chili using four different doses; the mean dose, recommended on the label of the product (R), a half one (1/2R), 1.5 times (1.5R) and twice the recommended dose (2R). Three frequencies of application were applied; once a week, twice a week, and once every other week, for 6 weeks from the beginning of flowering. Phytotoxicity was evaluated measuring the response of some physiological traits, Chlorophyll Fluorescence (CF), Leaf Temperature (LT), Transpiration (Tr), and Stomatal Resistance (SR). CF was measured by means of a portable chorophyll fluorscence meter; LT, Tr, and SR were measured using a LI-Cor Porometer. The doses and frequencies used are all common in commercial chili fields in Mexico. Results showed that phytotoxicity caused by insecticides can be an important damage factor to the plants, something that can cause reduction of yields. CF was shown to be the most sensitive variable to evaluate the phytotoxicity caused by insecticides. Fruit malformation was observed in all treatments. Chlorophyll content was reduced up to 25%, on average. The phosphorate insecticides affected the physiological parameters more drastically than the others. Results evidence the irreversible crop damage caused by excessive insecticide applications.

Free access

J.R. Bohac, P.D. Dukes, A. Jones, J.M. Schalk, H.F. Harrison Jr., S.C. Charleston, and M. G. Hamilton

Carolina Bunch is a sweetpotato cultivar that combines high yield, excellent flavor and appearance with multiple pathogen and pest resistances. It is ideal for home or market gardens, because of its short vine and bunch habit that allow for production of high yields in a limited space. The roots are fusiform with uniform shape and a smooth, bright, light copper skin and dark orange flesh. When baked, the roots have a smooth texture and are sweet, moist and have excellent flavor and appearance. This sweetpotato can be grown virtually without pesticides. It has very high levels of resistances to southern root knot and other species of nematodes, Fusarium wilt, feathery mottle virus, sclerotial blight in plant beds, and Streptomyces soil rot. It has good resistance to many soil insects including several species of wireworm, Diabrotica, Systena, and flea beetles. In the southern US, it yields better than `Jewel' in a growing season of 110-120 days. Foundation roots are available in limited quantities from South Carolina Foundation Seed Association, Inc, 1162 Cherry Hill Rd, Clemson SC 29634-0393.