Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: H.D. Skipper x
Clear All Modify Search

The rhizospheres of creeping bentgrass (Agrostis palustris Huds.) and hybrid bermudagrass (Cynodon dactylon (L.) Pers. × C. transvaalensis Burtt-Davy) putting greens were sampled quarterly for 4 years. Six bacterial groups, including total aerobic bacteria, fluorescent pseudomonads, actinomycetes, Gram-negative bacteria, Gram-positive bacteria, and heat-tolerant bacteria, were enumerated. The putting greens were located in four geographic locations (bentgrass in Alabama and North Carolina; bermudagrass in Florida and South Carolina) and were maintained according to local maintenance practices. Significant effects were observed for sampling date, turfgrass species and location, with most variation due to either turfgrass species or location. Bentgrass roots had significantly greater numbers of fluorescent pseudomonads than bermudagrass roots, while bermudagrass roots had significantly greater numbers of Gram-positive bacteria, actinomycetes and heat-tolerant bacteria. The North Carolina or South Carolina locations always had the greatest number of bacteria in each bacterial group. For most sampling dates in all four locations and both turfgrass species, there was a minimum, per gram dry root, of 107 CFUs enumerated on the total aerobic bacterial medium and a minimum of 105 CFUs enumerated on the actinomycete bacterial medium. Thus, it appears that in the southeastern U.S. there are large numbers of culturable bacteria in putting green rhizospheres that are relatively stable over time and geographic location.

Free access

Taxonomic diversity of bacteria associated with golf course putting greens is a topic that has not been widely explored. The purpose of this project was to isolate and identify culturable bacteria from the rhizosphere of creeping bentgrass (Agrostris palustris Huds.) at two sites (Alabama and North Carolina) and hybrid bermudagrass [Cynodon dactylon (L.) Pers. × C. transvaalensis Burtt-Davy] at two sites (Florida and South Carolina) for a minimum of 3 years with sampling initiated after the construction process. Randomly selected colonies were identified using gas chromatography for analysis of fatty acid methyl ester profiles. Over 9000 isolates were successfully analyzed. When a similarity index of 0.300 or higher was used, the average number of unidentifiable isolates was 38.6%. The two dominant genera in both bentgrass and bermudagrass rhizospheres were Bacillus and Pseudomonas with Bacillus dominant in bermudagrass and Pseudomonas dominant or equal to Bacillus in bentgrass. Other genera that comprised at least 1% of the isolates at all four sites were Clavibacter, Flavobacterium, and Microbacterium. Arthrobacter also comprised a significant portion of the bacterial isolates in the bentgrass rhizosphere, but not the bermudagrass rhizosphere. Overall, there were 40 genera common to all four sites. At the species level, there were five that comprised at least 1% of the isolates at each location: B. cereus, B. megaterium, C. michiganensis, F. johnsoniae, and P. putida. As has been reported for many grasses, we found considerable taxonomic diversity among the culturable bacterial populations from the rhizospheres of bentgrass and bermudagrass grown in sand-based putting greens.

Free access