Search Results
In one greenhouse and two field experiments, eight or ten pepper (Capsicum annuum L.) cultivars were subjected to low-light stress by use of shade cloth (reducing light by 80%) or to foliar sprays of ethephon at 75 or 150 pi-liter-]. Both low-light stress and ethephon identified `Ace', 'Canape', and. `Belrubi' as less susceptible to flower and flower bud abscission than other cultivars in the first field experiment. In the 2nd year, air mean maxima of 32C caused severe abscission in controls and shaded plants, and complete loss of flowers in those sprayed with ethephon. Abscission of disbudded pedicels was not related to abscission susceptibility of eight cultivars when subjected to shade. While ethephon spray can serve as a satisfactory abscission screening tool under unstressed growing conditions, low-light stress imposed by shading may be used under a wider range of conditions. Chemical name used: 2-chloroethyl phosphoric acid (ethephon).
When pumpkins are grown in elevated temperatures (32/27 °C day/night) for 1 week during flower development, fewer female flower buds are formed than at normal temperatures (20/15 °C) and only a small percentage of these reach anthesis. To determine if application of the ethylene-releasing compound ethephon can overcome the suppression of female flowers at high temperatures, `Baby Bear' pumpkin plants were sprayed at the two-leaf stage with 100 or 300 μL L–1 ethephon and then grown in hot and cool greenhouse compartments. At 20/15 °C, 17% of the first 15 main stem nodes produced female flower buds on control plants and virtually all of these developed into open flowers. The higher rate of ethephon increased female bud percentage to 37%. At 32/27 °C, only 3% of the nodes formed female flower buds and 2% flowered. Application of ethephon did not significantly increase female expression at high temperature, and none of the buds reached anthesis. Treatment with the inhibitor of ethylene action silver thiosulfate reduced female flower bud formation at the low temperature and entirely suppressed female flower buds at high temperature. In two additional experiments, these treatments were applied to two cultivars grown at a less extreme 32/20 and at 20/15 °C. Female buds and open flowers were moderately increased by ethephon in the high temperatures, suggesting that ethephon might foster female flowering in less extreme temperatures. Further work is needed to determine if ethephon treatment can overcome the heat-induced inhibition of female flowers in pumpkin under field conditions.
Abstract
Choice of the most appropriate cultivars is a key decision that vegetable growers face every growing season, and one on which the profitability of the crop depends. Evaluation of cultivars for adaptation to local growing conditions is therefore of crucial importance to extension and research personnel that serve the vegetable industry and the companies that are developing and releasing vegetable cultivars. The present-day climate of restricted budgets and pressure to move from applied to more basic research has forced experiment station and university personnel in North America to abandon or greatly reduce vegetable cultivar testing. The seed industry has traditionally relied on both public institutions and its own grower–cooperators to evaluate the merits of new lines. Increasingly, seed companies face requests for funding of these public trials, or are asked to pay entry fees to submit new cultivars for testing.
Increase in plant density often results in reduction in reproductive potential of individual plants in cucurbits. The reduction may be due to reduced female flower production or a reduction or a delay in fruit set or to decreased fruit size. To determine the cause of the reduction, flowering, and fruiting of two pumpkin cultivars was evaluated in four field experiments under four plant densities ranging from 4483 plants/ha to 23,910 plants/ha and in a greenhouse using three levels of shade. Weekly flower and flower bud counts were made in the field experiment starting at first anthesis. Flowers were determined to have either set or aborted or not have reached anthesis. Increasing plant population from 4483 plants/ha to 23,910 plants/ha resulted in an increase in number of flowers per unit area up to 11,955 plants/ha, beyond which there was a steep decline. Increased plant density also resulted in an increase in aborted female flower buds that did not reach anthesis. Increase in plant density only reduced fruit set at very high populations. Number of fruits per area increased linearly with plant density up to 11,955 plants/ha, but decreased at higher plant populations. Reducing incident light by 30%, 60%, and 80% in a greenhouse experiment resulted in reduction of both male and female flowers. At 80% shade, there was a complete suppression of female flowers, whereas male flowers were still being produced. The number of female flowers reaching anthesis was positively correlated with total shoot dry weight while floral buds and male flowers were not. Reduction of individual plant biomass under high-density plantings might therefore be limiting female flower production and yield.
Cultivars of bell pepper differ in susceptibility to bud/flower abscission. Reduction in the level of assimilate, and alterations in assimilate partitioning may be involved in the processes leading to bud/flower abscission. Four growth analysis experiments were conducted to determine whether two pepper cultivars differing in susceptibility to stress-induced abscission showed corresponding differences in growth and rates and dry matter partitioning when subjected to shade stress. The reduction in RGR and NAR with shading was significantly greater for the abscission-susceptible `Shamrock' than the more tolerant `Ace'. Partitioning of dry matter to reproductive structures was reduced by shading. There were no cultivar differences in the proportion of dry matter partitioned to young developing leaves. Fully expanded leaves comprised a larger proportion of total dry matter in `Shamrock'. The lower NAR of `Shamrock' under stress may have led to greater bud/flower abscission than `Ace' under shade stress. If preferential partitioning of dry matter to competing structures (developing leaves) is also involved, it was not detected using this technique.
Investigations of varietal differences in pumpkin flowering and fruitset patterns were initiated in response to reports of poor fruitset by NYS growers. In addition, pollination requirements for marketable fruit were explored in one cultivar. Flowering date, fruitset, and fruit characteristics were recorded for 2 consecutive years in a RCBD of six popular Cucurbita pepo cultivars (Wizard, Happy Jack, Autumn Gold, Ghost Rider, Howden and Baby Bear). On average, female blossoms opened 38 days after 3-wk-old seedlings were transplanted into the field. Flowering period lasted for 3 to 4 weeks. No consistent pattern was found in female flower production nor fruitset until the last week when significant declines occurred. Each blossom only opens for one day and typically closes between 10 am and noon, limiting pollination opportunities. H and-pollination of Wizard' with various dilutions of pollen revealed that a minimum of approximately 2000 grains of pollen is necessary for fruitset. Removal of 66-75% of the stigmatic surfaces did not affect seed number or their location in the fruit, nor fruit shape or size. Fruit size was not correlated with seed number, although no fruit developed with less than 100 seed.
The blossom-end scarring of tomato fruit caused by exposure of the plant to cool weather during ovary formation, commonly termed catfacing, can also be induced by GA3 foliar sprays. To determine if GA3 treatment could serve as a cultivar screening tool to identify lines susceptible to the disorder, we compared the catfacing incidence in 14 fresh-market tomato cultivars after GAS sprays and in nontreated controls in two field experiments. In 1 year, removal of the plant's apex was also imposed. GA3 sprays (22 μm twice, applied 1 week apart to tomato seedlings ≈5 weeks old) increased catfacing incidence in both years and accentuated cultivar differences in the disorder. Topping did not increase catfacing significantly. The cultivars Valerie, Sunrise, and Basketvee were least affected by catfacing in the experiments, while `Starfire', `New Yorker', and `Olympic' had the highest percentage of catfaced fruit. The GA3 screening method shows promise for identifying cultivar differences in susceptibility to blossom-end scarring. Chemical name used: gibberellic acid (GA3).