Search Results

You are looking at 1 - 10 of 23 items for

  • Author or Editor: H.C. Wien x
Clear All Modify Search
Free access

H.C. Wien

In one greenhouse and two field experiments, eight or ten pepper (Capsicum annuum L.) cultivars were subjected to low-light stress by use of shade cloth (reducing light by 80%) or to foliar sprays of ethephon at 75 or 150 pi-liter-]. Both low-light stress and ethephon identified `Ace', 'Canape', and. `Belrubi' as less susceptible to flower and flower bud abscission than other cultivars in the first field experiment. In the 2nd year, air mean maxima of 32C caused severe abscission in controls and shaded plants, and complete loss of flowers in those sprayed with ethephon. Abscission of disbudded pedicels was not related to abscission susceptibility of eight cultivars when subjected to shade. While ethephon spray can serve as a satisfactory abscission screening tool under unstressed growing conditions, low-light stress imposed by shading may be used under a wider range of conditions. Chemical name used: 2-chloroethyl phosphoric acid (ethephon).

Free access

H.C. Wien

When pumpkins are grown in elevated temperatures (32/27 °C day/night) for 1 week during flower development, fewer female flower buds are formed than at normal temperatures (20/15 °C) and only a small percentage of these reach anthesis. To determine if application of the ethylene-releasing compound ethephon can overcome the suppression of female flowers at high temperatures, `Baby Bear' pumpkin plants were sprayed at the two-leaf stage with 100 or 300 μL L–1 ethephon and then grown in hot and cool greenhouse compartments. At 20/15 °C, 17% of the first 15 main stem nodes produced female flower buds on control plants and virtually all of these developed into open flowers. The higher rate of ethephon increased female bud percentage to 37%. At 32/27 °C, only 3% of the nodes formed female flower buds and 2% flowered. Application of ethephon did not significantly increase female expression at high temperature, and none of the buds reached anthesis. Treatment with the inhibitor of ethylene action silver thiosulfate reduced female flower bud formation at the low temperature and entirely suppressed female flower buds at high temperature. In two additional experiments, these treatments were applied to two cultivars grown at a less extreme 32/20 and at 20/15 °C. Female buds and open flowers were moderately increased by ethephon in the high temperatures, suggesting that ethephon might foster female flowering in less extreme temperatures. Further work is needed to determine if ethephon treatment can overcome the heat-induced inhibition of female flowers in pumpkin under field conditions.

Free access

H.C. Wien and Yiping Zhang

A series of greenhouse experiments was conducted with `Shamrock' bell pepper (Capsicum annuum L.) to gain insight into the flower abscission mechanism and to investigate methods to reduce reproductive structure abscission due to low light intensity. Foliar sprays of STS reduced stress-induced abscission. Application of the synthetic auxin NAA to the ovary substituted for pollination to effect fruit set under nonstress conditions, but did not improve fruit set compared to pollinated controls under low-light stress. Ovary treatment with GA3 and BA either alone or combined with NAA had similar results to NAA treatment alone. Foliar sprays of NAA or CPA also did not improve fruit set under low-light stress conditions. Application of NAA in an aqueous paste to the abscission zone prevented abscission but inhibited fruit growth. Taken together, the results indicate that stress-induced abscission is not prevented by auxin application to the ovary or foliage. The interaction of ethylene and auxin in reproductive structure abscission under stress conditions requires further investigation. Chemical names used: 6-benzylaminopurine (BA), p-chlorophenoxy acetic acid (CPA), gibberellic acid (GA,), silver thiosulfate (STS).

Free access

H.C. Wien and Y. Zhang

Catfacing of tomato (Lycopersicon esculentum Mill.) fruit describes the enlarged blossom-end scar and ridged, flattened or irregular fruit shape often found on plants subjected to low temperature during ovary development. Experiments were conducted to determine if GA3 foliar sprays could be used as a screening tool for catfacing. Concentrations of 5 to 50 μM of GA3, applied once at transplanting, significantly increased catfacing incidence on the susceptible `Revolution', whereas the resistant `Valerie' was less affected. Two applications 8 days apart extended symptoms to later clusters formed on branches and may be useful for screening cultivars of a wide range of earliness. Plant apex removal may also be possible as a fruit catfacing screening tool. Chemical name used: gibberellic acid (GA3).

Free access

H.C. Wien and R.J. Sloan

The growth processes of most horticultural crops are too slow to be visually interesting to students. Time lapse photography has been used for years to speed up the action and make plants “come alive.” With the advent of video technology, time lapse techniques have become convenient, easy, and affordable. The system which we have found satisfactory consists of a time lapse video cassette recorder, linked by optical fiber cable to a closed circuit color video camera in a ventilated housing. Typically, the camera has been set up in a greenhouse compartment, monitoring growth processes of vegetable crops, and linked by cable to the VCR in an office 80 m away. Equipment costs with one camera are less than $3000. Two cameras can be set up to do comparative growth studies, with two images side-by-side, using a screen splitter. Costs of the latter system is about $4500. Growth processes such as cabbage head formation, curd growth in cauliflower, and weed-crop competition of mustard and peas have been the subjects so far. The technique lends itself to increasing the visual impact of teaching, and gaining a better understanding of plant growth processes in research.

Free access

R.O. Nyankanga and H.C. Wien

Increase in plant density often results in reduction in reproductive potential of individual plants in cucurbits. The reduction may be due to reduced female flower production or a reduction or a delay in fruit set or to decreased fruit size. To determine the cause of the reduction, flowering, and fruiting of two pumpkin cultivars was evaluated in four field experiments under four plant densities ranging from 4483 plants/ha to 23,910 plants/ha and in a greenhouse using three levels of shade. Weekly flower and flower bud counts were made in the field experiment starting at first anthesis. Flowers were determined to have either set or aborted or not have reached anthesis. Increasing plant population from 4483 plants/ha to 23,910 plants/ha resulted in an increase in number of flowers per unit area up to 11,955 plants/ha, beyond which there was a steep decline. Increased plant density also resulted in an increase in aborted female flower buds that did not reach anthesis. Increase in plant density only reduced fruit set at very high populations. Number of fruits per area increased linearly with plant density up to 11,955 plants/ha, but decreased at higher plant populations. Reducing incident light by 30%, 60%, and 80% in a greenhouse experiment resulted in reduction of both male and female flowers. At 80% shade, there was a complete suppression of female flowers, whereas male flowers were still being produced. The number of female flowers reaching anthesis was positively correlated with total shoot dry weight while floral buds and male flowers were not. Reduction of individual plant biomass under high-density plantings might therefore be limiting female flower production and yield.

Free access

H.C. Wien and A.D. Turner

The blossom-end scarring of tomato fruit caused by exposure of the plant to cool weather during ovary formation, commonly termed catfacing, can also be induced by GA3 foliar sprays. To determine if GA3 treatment could serve as a cultivar screening tool to identify lines susceptible to the disorder, we compared the catfacing incidence in 14 fresh-market tomato cultivars after GAS sprays and in nontreated controls in two field experiments. In 1 year, removal of the plant's apex was also imposed. GA3 sprays (22 μm twice, applied 1 week apart to tomato seedlings ≈5 weeks old) increased catfacing incidence in both years and accentuated cultivar differences in the disorder. Topping did not increase catfacing significantly. The cultivars Valerie, Sunrise, and Basketvee were least affected by catfacing in the experiments, while `Starfire', `New Yorker', and `Olympic' had the highest percentage of catfaced fruit. The GA3 screening method shows promise for identifying cultivar differences in susceptibility to blossom-end scarring. Chemical name used: gibberellic acid (GA3).