Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: H. Tyler Campbell x
Clear All Modify Search

Weed management is an important component of sweetpotato production. Currently, S-metolachlor is the only herbicide registered in sweetpotato that has some suppressive effect on nutsedge species (Cyperus spp.). It is integral that the release of any new germplasm from sweetpotato breeding programs be tolerant to S-metolachlor. Screening for thousands of experimental clones for S-metolachlor in a field trial would be cumbersome. Therefore, screening for tolerant lines might be streamlined in an hydroponics system. Research was conducted to determine whether a hydroponics assay could detect differences in S-metolachlor response between a known sensitive sweetpotato cultivar (Centennial) and a tolerant sweetpotato cultivar (Beauregard) in 10 days. Results of the study show that ‘Beauregard’ was ≈50 times more tolerant to S-metolachlor than ‘Centennial’ when accessing injury at the 25% threshold. No differences were detected in S-metolachlor response between cultivars in the soil-based assay. This assay could be used for screening for S-metolachlor tolerance in a sweetpotato breeding program.

Open Access

Increased broccoli production in the eastern United States necessitates the exploration of novel concepts to improve weed management in this region. Currently, there are minimal selective postemergent herbicide options available for broccoli growers in the southeastern United States. Research was conducted to determine if bentazon, an effective nutsedge herbicide, could be used safely for broccoli when tank-mixed with chelated iron in both greenhouse and field settings. Initial greenhouse screens in Charleston, SC, demonstrated that when 224 g⋅ha−1 active ingredient of chelated iron was tank-mixed with bentazon, a reduction in injury occurred in most of the cultivars that were evaluated. However, based on injury ratings, yield parameters, and broccoli quality observed in the field, it appears that the applications of chelated iron yielded no positive effects. Furthermore, for some of the broccoli cultivars it appeared to exacerbate bentazon injury in the field.

Open Access