Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: H. Kage x
Clear All Modify Search
Authors: , , and

Concepts of above-ground dry matter partitioning in cauliflower [Brassica oleracea L. (Botrytis Group)] as dependent on nitrogen (N) supply and light environment are presented. Leaf and stem partitioning depends on a functional relationship between stem dry weight and leaf area, independent of N status. Dry matter partitioning into the inflorescence is sink-limited (potential capacity) at the beginning, and source limited (daily available assimilates) later. The intrinsic specific growth rate of the inflorescence is dependent on leaf N content. The model is parameterized and evaluated with data from field experiments. Applied to an independent data set, the model predictions of proportions of inflorescence, leaf, and stem on total dry matter corresponded with measurements (r = 0.84, 0.92 and 0.22, respectively) for different N fertilization rates and light treatments.

Free access