Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: H. Dayton Wilde x
Clear All Modify Search
Restricted access

Lav K. Yadav, Edward V. McAssey and H. Dayton Wilde

Rhododendron canescens is a deciduous azalea native to the southeastern United States that is used in landscaping due to its ornamental qualities. A genotyping-by-sequencing (GBS) approach was taken to characterize the genetic structure and diversity of a R. canescens germplasm collection. Single nucleotide polymorphisms (SNPs) were identified by two software platforms, STACKS and GBS-SNP-CROP. Three distinct R. canescens populations were detected by STRUCTURE analysis with GBS-SNP-CROP data, whereas two populations were distinguished using STACKS data. Principal component analysis (PCA) with data from both SNP pipelines supported the presence of three populations. Statistical results indicated that there was low genetic differentiation between the populations, but relatively high genetic diversity within populations. The inbreeding coefficient of the R. canescens accessions was low, which would be expected with an outcrossing species. These results suggest that there may be a significant level of gene flow between populations of R. canescens.

Free access

Yihua Chen, Peng Jiang, Shivegowda Thammannagowda, Haiying Liang and H. Dayton Wilde

We investigated the FT/TFL1 family of peach (Prunus persica), a gene family that regulates floral induction in annual and perennial plants. The peach terminal flower 1 gene (PpTFL1) was expressed in a developmental and tissue-specific pattern that, overall, was similar to that of TFL1 orthologs in other woody Rosaceae species. Consistent with a role as a floral inhibitor, ectopic expression of PpTFL1 in arabidopsis (Arabidopsis thaliana) delayed flowering and prolonged vegetative growth. Other members of the peach FT/TFL1 family were identified from the sequenced genome, including orthologs of flowering locus T, centroradialis, brother of ft, and mother of ft and tfl. Sequence analysis found that peach FT/TFL1 family members were more similar to orthologous genes across the Rosaceae than to each other. Together these results suggest that information on genes that regulate flowering in peach could be applied to other Rosaceae species, particularly ornamentals.